
IRIS: A machine vision system for AGV’s

1. Introduction

1
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

1.1 Introduction to AGV’s

AGV stands for Autonomously Guided Vehicles. They

represent a class of robots which, by and large, are capable of making

decisions on their own with a reduced degree of human intervention.

They differ from teleoperated robots, which are robots which are

simply controlled remotely or onsite by a human operator.

Autonomously Guided Vehicles are proving their utility in various areas

which involve operations too dangerous for human beings to perform

or too far off for even remote control signals to reach the robot.

AGV’s normally come equipped with an array of sensors. These

sensors act as their eyes and ears and enable it to make intelligent

decisions about its environment. There are several modes of sensing,

some of which include sonar, infrared (IR), tactile sensors and vision.

1.2 IRIS: a machine vision system for AGV’s

The main challenge for AGV’s is to reach a degree of autonomy

which makes it reliable enough to perform certain tasks without human

intervention at all. However, this kind of operation requires sensory

data far richer than either IR or sonar or even tactile sensors. The

richest source of information available to us is vision and it is natural

that we try to incorporate such a system in AGV’s too. Machine vision

systems thus allow an AGV to ‘see’, interpret its surroundings and act

in a manner appropriate for the completion of its assigned task. IRIS is

one such vision system currently under active development.

IRIS presents the programmer/user with a full complement of 2D

image processing algorithms and easy-to-use data structures which

may be extended, modified and reused as seen fit. In addition, it has

an underlying (basic) 3D graphics engine which has used to implement

useful algorithms which work in three dimensions, like stereovsion and

3D space carving.

2
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

IRIS is designed to be used as a standalone application in its own

right as well as a library where it is plugged in and used as a module.

Being extremely generic, the IRIS core works with little or no

modifications on Windows and Linux platforms and can be used for any

project involving machine vision or image processing.

1.3 Introduction to the test platform: COMRADE

The test platform on which IRIS runs is called COMRADE. COMRADE

stands for Cooperative Mobile Robots for Autonomous Decisive

Exploration. It is a research project funded by Yahoo! Inc. to

investigate the viability of constructing cost-effective yet reasonably

complex robots with powerful inductive machine vision intelligence and

cooperative capabilities to accomplish tasks collectively.

3
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

2. Theory of a machine vision system

4
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

2.1. The vision data stream

The data stream in most cases consists of frames captured

continuously by a sensor of some sort like web cams or digital

cameras. The quality and the rate of capture depend largely upon the

sensor, the speed of the ADC’s and the data link. Since technology has

become smaller and faster, very good frame rates is now the norm

(~30 fps). Image quality has also improved substantially, so that most

of the preprocessing can be performed within the sensor itself. In such

cases, a substantial part of the work of the vision system is solved

immediately. However for less powerful sensors, preprocessing must

be performed using software.

The images received are usually interpreted as RGB streams,

i.e., the color each pixel of the image is described by the relative

proportions of the three primary colors (red, green, blue) used to

create that color. In the case of bitmaps (.bmp files), each of the three

channels can assume a value from 0 to 255. Thus 255-255-255

represents white, while 0-0-0 represents black.

However, the RGB color model is not amenable to most preprocessing

operations. The HSV/HLS (Hue-Saturation-Value and

Hue-Luminance-Saturation) color models are easier and more intuitive

to work with. The diagram below shows the geometric relationships

between hue, color and luminance:

5
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

The sensor software writes each captured frame directly into

primary memory. This is a very good method since file I/O is

eliminated. However, this comes at the expense of requiring large

amounts of runtime primary memory in case the preprocessor must

store multiple frames. It may be possible to cache some important

frames as files, but this should be done sparingly.

As noted previously, the vision data stream may have imbedded

noise as well as artifacts. The preprocessing stage is responsible for

preparing the image for further analysis. The next section discusses

that topic.

6
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

2.2. Image preprocessing

If the sensor does not possess any image processing capabilities, or

if the environment is noisy to the extent that the sensor’s operations

are not sufficient to attain the desired level of clarity, software

processing of the image data must be performed. There are several

algorithms that are available to preprocess the incoming data prior to

analysis. Some of the techniques and their pertinent areas of

application are described briefly below:

● Independent channel adjustment: RGB has three channels: red,

green and blue. Likewise, HSL has three channels: hue,

saturation and luminance. During occasions it is necessary to

independently adjust the value of a particular channel. For

example, if the color content of the image is not distinct enough,

the hue may be increased to the desired level.

● Grayscale conversion: In some analyses, color content is not

important. A grayscale intensity image is ideal for such cases.

Grayscale conversion may be performed using more than one

method, as outlined below:

o Equate every pixel’s red and green component to its green

channel component. That is:

o For every pixel, equate its three channels to the average of

their original intensity values. That is:

7
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● Contrast stretching: The human eye is most sensitive to the

median range of electromagnetic frequencies. If the relative

strength of this band of frequencies in the image is weakened,

the image appears ‘washed-out’ due to low contrast. Contrast

stretching corrects this problem by using a transfer function with

slopes different from unity for various intensity levels to increase

contrast. The transfer function might be as below:

● Histogram equalisation: In many cases, due to shortcomings of

the sensor or inadequate illumination, the nonzero values occupy
8

Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

a narrow band in the intensity spectrum. Analysing the

histogram of a given image and spreading it out such that it

covers the entire image spectrum, while maintaining its original

shape, may correct this. This results in a more uniform

distribution of intensity values. For low-quality sensors or those

with a small dynamic response, histogram equalisation is a

necessity.

● Two-dimensional convolution: Convolution is easily one of the

most powerful techniques for manipulating a desired image.

Typically, convolution involves multiplication of the image with a

2D mask that is slid across the image to calculate the convolved

value for each pixel. The mask’s dimensions are generally

smaller than those of the image. The convolved intensity/

channel value of pixel depends upon its own as well as the

surrounding pixel values. The operation is given as:

Most image processing techniques rely on convolution at some

stage. For example, the Sobel, Prewitt and Canny edge detection

techniques use convolution masks. Operations like blurring, smoothing

and a number of generic channel transfer functions may be

implemented quite easily using two-dimensional convolution.

It may be noted that convolution with a mask is mathematically

equivalent to correlation with the same mask reflected along its

antidiagonal.

9
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● Unsharp masking: If the image received is out of focus, the

unsharp mask operation may be used to increase its sharpness.

Sharpening of images is a necessary step prior to edge

detection. However, a smoothing function must also be applied to

the image to reduce the effects of accentuated noise due to the

unsharp mask operation.

● Dilation and erosion: These two operations belong to the class of

morphological operations. Fundamentally, neither these

operations are asymmetric and are not inverses of each other,

nor commutative, though the effects are somewhat the reverse

of each other. Mathematically both are quite simple. Dilation

involves assigning to a pixel the maximum value that is present

in any of its eight immediate neighbors. Erosion involves

assigning to a pixel the minimum value that is present in any of

its eight immediate neighbors. Formally, we may write them as:

10
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● Edge detection: There are several methods for performing edge

detection. Some of them are Robert’s Cross Operator, Sobel,

Prewitt, Laplacian and Canny. All of these edge detection

schemes use convolution as one of the operations. Information

on these schemes is available in literature.

It must be noted that a preprocessor like this can be extended to

include any number of desired functions. It is also possible to use this

system as a separate image processing API for noncritical applications.

Parts of the system may be reused for other applications. In some

cases, the preprocessor can also perform some rudimentary tasks of

analysis, thus freeing up the following stages from some

responsibilities.

11
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

2.3. Typical objectives of IRIS

This is a possible list of the type of functions a system might be

expected to perform. However, this is biased heavily towards our

current work on IRIS. Other, equally valid, objectives exist and are

attainable by extending the current architecture.

● Given a line painted on the floor in a particular color, the vision

system should be able to continuously track it. Specifically, it

should be able to return the angle the line makes with some

constant reference.

● Given an image, it should be able to decompose it into blocks of

homogeneous color/intensity for a color distribution analysis.

● Given a shape, it should be able to recognise other instances of it

even when they are rotated, scaled or translated versions of the

original one.
12

Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● Given a colored scene, it should be able to perform fast color

filtering, recognition and be able to lock onto an object.

Most of these objectives would be unattainable in a rigid,

crisp-logic frame of computation. Thus, imprecision must be built into

the recognition engine. There are several candidates that qualify for

such a development. Below we describe some of the different

approaches and techniques that may be realistically incorporated in a

vision system.

2.4. Line following and the Hough Transform

Most industrial robots implement some form line following. The

sensors involved may be magnetic or visual in nature. However, the

forms of processing and triangulation involved are primitive in that

they are not at all suited for generic applications that require some

autonomy or in noisy environments, like similarly painted lines or stray

magnetic fields from random sources.

Thus, line following as a feature is best incorporated into the

same environment where imprecision will be built in.

The most direct method of determining information about the

orientation of a set of given points is statistical regression. However,

there are some problems. They are discussed below:

● The presence of noise is an important factor. If the line is thick

and well painted, then the regression routine will be insensitive

to a significant amount of noise. However, in the presence of

similarly colored objects or lines, the regression routine will give

plainly wrong results.

● Too many variations in the luminance of the line (due to point

illumination sources) may cause errors in the regression routine.

Increasing some tolerance limits too high may also cause

13
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

inclusion of noise points, which is again detrimental to the

regression routine’s performance.

The first problem cannot be overcome by any easy means.

Skeletonisation, however, offers a partial solution to the problem.

Erosion is also a viable, though more expensive, alternative; though

determining if there are multiple lines/entities requires use of more

complicated algorithms, like a variation of quadtree decomposition.

The second problem may be reduced externally by providing

uniform illumination or through software compensation like histogram

modification or luminance equalisation.

Another issue is the number of points to consider for regression

analysis. Logic dictates that regression be carried out on a scaled down

version of the line, since the line will have thousands of points to

analyse. However there is a hidden performance issue. Resizing buffers

takes up time. This has been observed during testing of pre-alpha

versions of IRIS-XT. Using all the points ironically takes less time.

There is a further issue of curved lines. Currently, linear regression

in the first power of x performs satisfactorily. If curve fitting to a good

approximation is required, a higher order regression routine may be

written. However, in most cases this is not necessary. This is possible if

only a small segment of the line is seen at a time. This is equivalent to

observing small straight segments approximating a curve. This

approach works well for gentle curves. For radical turns, the result may

be an angle that leads off the line, avoiding the sharp angles and

leading to the next, straighter, continuing segment.

14
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

2.4.1. The basic Hough Transform and its

generalisation

The basic Hough Transform is a very robust method of detecting 2D

shapes which can be represented using algebraic equations. The most

basic form of this transform is also one of the most useful: specifically

in the area of line following.

Consider a single isolated edge point (x, y)—there could be an infinite

number of lines that could pass through this point. Each of these lines

can be characterized as the solution to some particular equation. The

simplest form in which to express a line is the slope-intercept form:

y = mx + b

where m is the slope of the line and b is the y-intercept (the y value of

the line when it crosses the y axis). Any line can be characterized by

these two parameters m and b.

We can characterize each of the possible lines that pass through point

(x, y) as having coordinates (m, b) in some slope-intercept space. In

fact, for all the lines that pass through a given point, there is a unique

value of b for m:

b = y - mx

15
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

The set of (m, b) values corresponding to the lines passing through

point (x, y) form a line in (m, b) space. Every point in image space (x,

y) corresponds to a line in parameter space (m, b) and each point in

(m, b) space corresponds to a line in image space (x, y).

2.4.2 Accumulators

The Hough transform works by letting each feature point (x, y) vote in

(m, b) space for each possible line passing through it. These votes are

totaled in an accumulator.

Suppose that a particular (m, b) has one vote—this means that there

is a feature point through which this line passes. What if it has two

votes? That would mean that two feature points lie on that line. If a

position (m, b) in the accumulator has n votes, this means that n

feature points lie on that line.

2.4.3 The Hough Transform Algorithm

The algorithm for the Hough transform can be expressed as follows:

1. Find all of the desired feature points in the image.

2. For each feature point

3. For each possibility i in the accumulator that passes

through the feature point

4. Increment that position in the accumulator

5. Find local maxima in the accumulator.

6. If desired, map each maximum in the accumulator

back to image space. For finding lines, each feature point casts a line

of votes in the accumulator.

2.4.4. A Better Way of Expressing Lines

The slope-intercept form of a line has a problem with vertical lines:

both m and b are infinite.

16
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

Another way of expressing a line is in (ρ, θ) form:

x cos θ + y sin θ = ρ

One way of interpreting this is to drop a perpendicular from the origin

to the line. θ is the angle that the perpendicular makes with the x-axis

and ρ is the length of the perpendicular. θ is bounded by [0, 2π] and ρ

is bounded by the diagonal of the image.

Instead of making lines in the accumulator, each feature point votes

for a sinusoid of points in the accumulator.

Where these sinusoids cross, there are higher accumulator values.

Finding maxima in the accumulator still equates to finding the lines.

2.4.5 Circles

We can extend the Hough transform to other shapes that can be

expressed parametrically. For example, a circle of fixed radius can be

described fully by the location of its center (x, y).

Think of each feature (edge) point on the circle as saying, ”if I’m on

the circle, the center must be in one of these places”. It turns out that

the locus of these votes is itself a circle.

But what about circles of unknown size? In this case, we need a third

parameter: the radius of the circle. So, we can parameterize circles of

arbitrary size by (x, y, r). Instead of casting votes in a circular pattern

into a two-dimensional accumulator, we cast votes in circles of

successively larger size in a three-dimensional accumulator.

2.5. Complex shape detection using the GHT

Shape recognition may be performed after edge detection and noise

removal in an image. The fundamental requirements for effective

performance in this area (assuming no noise) are as follows:

● Rotational invariance
17

Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● Translational invariance

● Scaling invariance

● Distortion invariance (optional)

These features may be incorporated into a vision system by a

technique we call perimeter sampling.

2.5.1 Perimeter sampling

Consider an arbitrary shape as below.

Let us choose an arbitrary point within the shape somewhere near the

center. The selection of the point is not important except under

extreme circumstances. Now, let us calculate the distances from this

point to the perimeter at increments of angle x, like so:

Let these distances be stored as x1, x2, x3, x4, etc. Now, assume that

these values are displayed on a graph with angle as the x-axis.
18

Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

Note that the last first value repeats immediately after the last value,

since we now have an angle equal to nx+360 degrees (n=sample

number, x=angle increment). Thus, in the theta-domain (angle is the

x-axis), we have a discrete periodic signal. This is the R-table, and

we’ll discuss its importance in the next section.

Now, we may normalise this set of values so that the maximum value

is 1. The set of values so obtained may be termed as the shape

signature.

2.5.2 More Complicated Shapes: The Generalized

Hough Transform

Some shapes may not be easily expressed using a small set of

parameters. In this case, we must explicitly list the points on the

shape. Suppose that we make a table that contains all of the edge

pixels for our target shape. We can store for each of the pixels its

position relative to some reference point for the shape. We can then

feature point ”think” as follows: ”if I’m pixel i on the boundary, the

reference point must be at ref[i].”

This is called the Generalized Hough Transform and can be

expressed as follows:

1. Find all of the desired feature points in the image.

19
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

2. For each feature point

3. For each pixel i on the target’s boundary

4. Get the relative position of the reference point from i

5. Add this offset to the position of i

6. Increment that position in the accumulator

7. Find local maxima in the accumulator.

8. If desired, map each maxima in the accumulator back to image

space using the target boundary table

We can build a table that records for each point with edge

tangent orientation θ the direction α and distance r to the reference

point. Thus, when we find a point with edge tangent orientation θ, we

have to vote only in the direction of r, a. Of course, depending on the

complexity of the shape, there may be multiple such points with

tangent orientation θ. We thus build our table to store (and vote for!)

all such points. This is called an R-table.

2.6. Color segmentation

Color segmentation is an important component in a vision

system. Color differentiates; color distinguishes. Many target detection

tasks can be solved very quickly simply by using color filtering and

some careful error checking.

However, at times, it is necessary to analyse the color

distribution of an image more carefully. In such a case, color

segmentation is invaluable. This segmentation may be performed at

various levels, depending upon the detail required. Here we describe a

possible use of the quadtree decomposition for color segmentation.

2.6.1. Quadtree decomposition

20
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

Quadtree decomposition is an analysis technique that involves

subdividing an image into blocks that are more homogeneous than the

image itself. This technique reveals information about the structure of

the image. It is also useful as the first step in adaptive compression

algorithms.

A typical quadtree decomposition function works by dividing a

square image into four equal-sized square blocks, and then testing

each block to see if it meets some criterion of homogeneity (e.g., if all

of the pixels in the block are within a specific dynamic range). If a

block meets the criterion, it is not divided any further. If it does not

meet the criterion, it is subdivided again into four blocks, and the test

criterion is applied to those blocks. This process is repeated iteratively

until each block meets the criterion. The result may have blocks of

several different sizes. For example, suppose we want to perform

quadtree decomposition on a 128-by-128 intensity image. The first

step is to divide the image into four 64-by-64 blocks. We then apply

the test criterion to each block; for example, the criterion might be

Max (block_intensity) – min (block_intensity) <= 0.2

If one of the blocks meets this criterion, it is not divided any

further; it is 64-by-64 in the final decomposition. If a block does not

meet the criterion, it is then divided into four 32-by-32 blocks, and the

test is then applied to each of these blocks. The blocks that fail to

meet the criterion are then divided into four 16-by-16 blocks, and so

on, until all blocks ‘pass.’ Some of the blocks may be as small as

1-by-1, unless we specify otherwise.

21
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

The advantage of this technique is that it allows partition of the

image at various resolutions. Increasing tolerance limits results in a

blocky representation, which may be the maximum detail we may need

most of the time. Only occasionally will we need a higher resolution

analysis (but not too high, since that results in the original image

itself). Then it is a simple task of tightening the appropriate tolerance

factors.

2.7 Camera models and projective geometry

Perspective projection (central projection) describes image formation

by a pinhole camera or a thin lens.

22
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

The single perspective camera

● Consider the case of one camera with a thin lens (simplest

approximation). The pinhole camera performs perspective

projection.

● The geometry of the device is depicted in Figure above; the

plane on the bottom is an image plane pi to which the real

world projects, and the vertical dotted line is the optical axis.

● The lens is positioned perpendicularly to the optical axis at the

focal point C (also called the optical center). The focal length

f (sometimes called the principal axis distance) is a parameter of

the lens.

23
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● The projection is performed by an optical ray (also a light beam)

reflected from a scene point X. The optical ray passes through

the optical center C and hits the image plane at the point U.

● Let's define four co-ordinate systems:

o The world Euclidean co-ordinate system (subscript

_w) has origin at the point O_w.

o Points X, U are expressed in the world co-ordinate system.

● The camera Euclidean co-ordinate system (subscript _c) has

the focal point C = O_c as its origin.

● The co-ordinate axis Z_c is aligned with the optical axis and

points away from the image plane.

● We can align the world to camera co-ordinates by performing an

Euclidean transformation consisting of a translation t and a

rotation R.

● The image Euclidean co-ordinate system (subscript _i) has

axes aligned with the camera co-ordinate system, with X_i, Y_i

lying in the image plane.

● The image affine co-ordinate system (subscript _a) has

co-ordinate axes u, v, w, and origin O_i coincident with the origin

of the image Euclidean co-ordinate system.

● The axes w, v are aligned with the axes Z_i, X_i, but the axis u

may have a different orientation to the axis Y_i.

● The reason for introducing the camera affine co-ordinates is the

fact that in general, pixels need not be perpendicular and axes

can be scaled differently. A camera performs a linear

transformation from the 3D projective space P^3 to the 2D

projective space P^2.

● A scene point X is expressed in the world Euclidean co-ordinate

system as a 3x1 vector. To express the same point in the camera

24
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

Euclidean co-ordinate system, i.e. X_c, we have to rotate it as

specified by the matrix R and translate it by subtracting vector t.

(Eqn 2.1)

● The point X_c is projected to the image plane pi as point U_c.

o The x and y co-ordinates of the projected point can be

derived from the similar triangles illustrated in Figure 9.4.

(Eqn 2.2)

● It remains to derive where the projected point U_c is positioned

in the image affine co-ordinate system, i.e. to determine the

co-ordinates which the real camera actually delivers.

● The image affine co-ordinate system, with origin at the top left

corner of the image, represents a shear and rescaling (often

called the aspect ratio) of the image Euclidean co-ordinate

system.

● The principal point U_0 - sometimes called the center of the

image in camera calibration procedures is the intersection of the

optical axis with the image plane pi. It is expressed in the image

affine co-ordinate system as U_0a=[u_0,v_0,0]^T.

25
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● The projected point can be represented in the 2D image plane pi

in homogeneous co-ordinates as ~u = [U,V,W]^T, and its 2D

Euclidean counterpart is u = [u,v]^T = [U/W,V/W]^T.

o Homogeneous co-ordinates allow us to express the affine

transformation as a multiplication by a single 3x3 matrix

where unknowns a, b, c describe the shear together with

scaling along co-ordinate axes, and u_0 and v_0 give the

affine co-ordinates of the principal point in the image.

(Eqn 2.3)

● We aim to collect all constants in this matrix, sometimes called

the camera calibration matrix K.

o Since homogeneous co-ordinates are in use, the equation

can be multiplied by any nonzero constant; thus we

multiply by z_c to remove this parameter.

(Eqn 2.4)

● The extrinsic parameters of the camera depend on the

orientation of the camera Euclidean co-ordinates with respect to

the world Euclidean co-ordinate system.

● The rotation matrix R expresses three elementary rotations of

the co-ordinate axes -- rotations along the axes x, y, and z are

termed pan, tilt, and roll, respectively.

● The translation vector t gives three elements of the translation of

the origin of the world co-ordinate system with respect to the

26
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

camera co-ordinate system. Thus there are six extrinsic

camera parameters; three rotations and three

translations.

● The camera calibration matrix K is upper triangular as can be

seen from the equation. The coefficients of this matrix are called

intrinsic parameters of the camera, and describe the specific

camera independent on its position and orientation in space.

● If the intrinsic parameters are known, a metric measurement can

be performed from images.

● Assume momentarily the simple case in which the world

co-ordinates coincide with the camera co-ordinates, meaning

that X_w = X_c.

o Then equation (9.6) simplifies to

(Eqn 2.5)

● Two separate equations for u and v

(Eqn 2.6)

where we make the substitutions alpha_u = -fa, alpha_shear = -fb,

and alpha_v = -fc.

● Thus we have five intrinsic parameters, all given in pixels.

● The formulae also give the interpretation of the intrinsic

parameters:

o alpha_u represents scaling in the u axis, measuring F in

pixels along the u axis,

o alpha_v similarly specifies f in pixels along the v-axis.
27

Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

o alpha_shear measures in pixels in the v-axis direction how

much is the focal length f coincident with u-axis slanted

from the Y_i-axis.

● Returning to the general case given by the equation (9.6) ...if we

express the scene point in homogeneous co-ordinates ~X_w =

[X_w,1]^T, we can write the perspective projection using a

single 3x4 matrix. The leftmost 3x3 submatrix describes a

rotation and the rightmost column a translation

o The delimiter | denotes that the matrix is composed of two

submatrices.

(Eqn 2.7)

where ~X is the 3D scene point in homogeneous co-ordinates.

● The matrix M is called the projective matrix (also camera

matrix).

● It can be seen that the camera performs a linear projective

transformation from the 3D projective space P^3 to the 2D

projective plane P^2.

● Introduction of projective space and homogeneous co-ordinates

made the expressions simpler. Instead of the nonlinear equation,

we obtained the linear equation.

● The 3x3 submatrix of the projective matrix M consisting of three

leftmost columns is regular, i.e. its determinant is non-zero.

● The scene point ~X_w is expressed up to scale in homogeneous

co-ordinates (recall that projection is expressed in the projection

space) and thus all alpha, M are equivalent for alpha not equal to

0.

28
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● Sometimes the simplest form of the projection matrix M is used.

(Eqn 2.8)

● This special matrix corresponds to the normalized camera

co-ordinate system, in which the specific parameters of the

camera can be ignored.

● This is useful when the properties of stereo and motion are to be

explained in a simple way and independently of the specific

camera.

Overview of single camera calibration

● The calibration of one camera is a procedure that allows us to set

numeric values in the camera calibration matrix K or the

projective matrix M.

● I. Intrinsic camera parameters only

o If the camera is calibrated, and a point in the image is

known, the corresponding line (ray) in camera-centered

space is uniquely determined.

● II. Intrinsic and extrinsic parameters.

● Basic approaches to the calibration of a single camera.

● I. Known scene

29
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● A set of n non-degenerate (not co-planar) points lies in the 3D

world, and the corresponding 2D image points are known.

o Each correspondence between a 3D scene and 2D image

point provides one equation

(Eqn 2.9)

● The solution solves an over-determined system of linear

equations.

● The main disadvantage is that the scene must be known, for

which special calibration objects are often used.

● II. Unknown scene:

● More views of the scene are needed to calibrate the camera.

● The intrinsic camera parameters will not change for different

views, and the correspondence between image points in different

views must be established.

● A. Known camera motion:

o Both rotation and translation known:

▪ This general case of arbitrary known motion from one

view to another has been solved.

o Pure rotation:

30
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

▪ If camera motion is restricted to pure rotation, the

solution can be found.

o Pure translation:

▪ The linear solution (pure translation) can be found.

● B. Unknown camera motion:

o No a priori knowledge about motion, sometimes called

camera self calibration.

o At least three views are needed and the solution is

nonlinear.

o Calibration from an unknown scene is still considered

numerically hard, and will not be considered here.

Calibration of one camera from the known scene

● Typically a two stage process.

● 1. The projection matrix M is estimated from the co-ordinates of

points with known scene positions.

● 2. The extrinsic and intrinsic parameters are estimated from M.

o (The second step is not always needed -- the case of

stereo vision is an example.)

● To obtain M, observe that each known scene point X=[x,y,z]^T

and its corresponding 2D image point [u,v]^T give one equation

(9.11) - we seek the numerical values m_ij in the 3x4 projection

matrix M.

● Expanding from Equation (9.11)

31
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

(Eqn 2.10)

● Thus we obtain two linear equations, each in 12 unknowns

m_11, ... , m_34, for each known corresponding scene and

image point.

o If n such points are available, we can write the equations

9.14 as a 2n x 12 matrix

(Eqn 2.11)

● The matrix M actually has only 11 unknown parameters due to

the unknown scaling factor, since homogeneous co-ordinates

were used.

● To generate a solution, at least six known corresponding scene

and image points are required.

● Typically, more points are used and the over-determined

equation (9.15) is solved using a robust least squares method to

correct for noise in measurements.

● The result of the calculation is the projective matrix M.

32
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● To separate the extrinsic parameters (the rotation R and

translation t) from the estimated projection matrix M, recall that

the projection matrix can be written as

(Eqn 2.12)

● Determining the translation vector is easy; we substituted A = K

R in equation (9.16), and so can write t = -A^-1 b.

● To determine R, note that the calibration matrix is upper

triangular and the rotation matrix is orthogonal.

● The matrix factorization method called QR decomposition will

decompose A into a product of two such matrices, and hence

recover K and R.

● So far, we have assumed that the lens performs ideal central

projection as the pinhole camera does.

● This is not the case with the real lenses.

● Such a typical lens performs distortion of several pixels.

● A human observer does not notice it if he looks at general scene.

● In the case an image is used for measurements, the distortion

from the idealized pinhole model should be compensated.

● When calibrating a real camera, the more realistic model of the

lens includes two distortion components.

● First, the radial distortion bends the ray more or less than in

the ideal case.

● Second, the decentering displaces the principal point from the

optical axis. Recall that the five intrinsic camera parameters were

introduced in equation.

● Here, the focal length f of the lens is replaced by a parameter

called the camera constant.

33
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● Ideally, the focal length and the camera constant should be the

same.

● In reality, this is true when the lens is focused at infinity.

Otherwise, the camera constant is slightly less than the focal

length. Similarly, the coordinates of the principal point can

slightly change from the ideal intersection of the optical axis with

the image plane.

● The main trick of the intrinsic parameters calibration is to

observe a known calibration image with some regular pattern,

e.g. blobs or lines covering the whole image. The observed

distortions of the pattern allow estimating the intrinsic camera

parameters.

● Both the radial distortion and the decentering can be treated in

most cases as rotationally symmetric, often modeled as

polynomials.

● Let u, v denote the correct image coordinates; ~u, ~v denote

the measured uncorrected image coordinates that come from the

actual pixel coordinates x, y and the estimate of the position of

the principal point ^u_0, ^v_0.

(Eqn 2.13)

● The correct image coordinates u, v are obtained if the

compensations for errors delta u, delta v are added to the

measured uncorrected image coordinates ~u, ~v.

(Eqn 2.14)

● The compensations for errors are often modeled as polynomials

in even powers to secure the rotational symmetry property.

34
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

o Typically elements up to maximally degree six are

considered.

(Eqn 2.15)

where u_p, v_p is the correction to the position of the principal point.

● The r^2 is the square of the radial distance from the centre of

the image.

(Eqn 2.16)

● Recall that ^u_0, ^v_0 were used in equation (9.18).

o The u_p, v_p are corrections to ^u_0, ^v_0 that can be

applied after calibration to get the proper position of the

principal point.

(Eqn 2.17)

● The typical radial distortion of the lens for the simple second

order model is a special case of the equation, i.e. no decentering

is assumed and second order polynomial approximation is

considered

(Eqn 2.18)

● The original image was a square pattern. The distorted images

are shown

35
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● The left part of the figure shows the pillow like distortion (minus

sign in the equation, whereas the right part depicts the barrel

like distortion corresponding to the plus sign.

o There are more complicated lens models that cover

tangential distortions that model such effects as lens

decentering.

2.8 Stereopsis (two cameras)

● Calibration of one camera and knowledge of the co-ordinates of

one image point allows us to determine a ray in space uniquely.

● If two calibrated cameras observe the same scene point X, its 3D

co-ordinates can be computed as the intersection of two such

rays.

● This is the basic principle of stereo vision that typically consists

of three steps:

o Camera calibration;

o Establishing point correspondences between pairs of points

from the left and the right images

36
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

o Reconstruction of 3D co-ordinates of the points in the

scene.

● The line connecting optical centers C and C' is called the

baseline. Any scene point X observed by the two cameras and

the two corresponding rays from optical centers C, C' define an

epipolar plane. This plane intersects the image planes in the

epipolar lines l, l'. When the scene point X moves in space, all

epipolar lines pass through epipoles e, e' - the epipoles are the

intersections of the baseline with the respective image planes.

● Let u, u' be projections of the scene point X in the left and right

images respectively. The ray CX represents all possible

projections of the point X to the left image, and is also projected

into the epipolar line l' in the right image.

● The point u' in the right image that corresponds to the projected

point u in the left image must thus lie on the epipolar line l' in

the right image.

o This geometry provides a strong epipolar constraint that

reduces the dimensionality of the search space for a

correspondence between u and u' in the right image from

2D to 1D.

37
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● A special arrangement of the stereo camera, called the canonical

configuration is often used.

o The baseline is aligned to the horizontal co-ordinate axis,

the optical axes of the cameras are parallel, the epipoles

move to infinity, and the epipolar lines in the image planes

are parallel.

● For this configuration, the computation is slightly simpler.

● It is easier to move along horizontal lines than along general

lines. The geometric transformation that changes a general

camera configuration with nonparallel epipolar lines to the

canonical one is called image rectification.

● There are practical problems with the canonical stereo

configuration, which adds unnecessary technical constraints to

the vision hardware.

o If high precision of reconstruction is an issue, it is better to

use general stereo geometry since rectification induces

resampling that causes loss of resolution.

● Let's consider an easy canonical configuration and recover depth.

● The optical axes are parallel, which leads to the notion of

disparity that is often used in stereo literature.

o In Figure, we have a bird's eye view of two cameras with

parallel optical axes separated by a distance 2 h.

38
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● The images they provide, together with one point P with

co-ordinates (x,y,z) in the scene, showing this point's projection

onto left (P_l) and right (P_r) images.

● The co-ordinates have the z axis representing distance from the

cameras (at which z=0) and the x axis representing horizontal

distance (the y co-ordinate, into the page, does not therefore

appear).

● x=0 will be the position midway between the cameras; each

image will have a local co-ordinate system (x_l on the left, x_r

on the right) which for the sake of convenience we measure from

the center of the respective images; that is, a simple translation

from the global x co-ordinate.

● P_l will be used simultaneously to represent the position of the

projection of P onto the left image, and its x_l co-ordinate - its

distance from the center of the left image (and similarly for P_r).

● It is clear that there is a disparity between x_l and x_r as a

result of the different camera positions (that is, | P_l - P_r | >

39
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

0); we can use elementary geometry to deduce the z co-ordinate

of P.

● P_l, C_l and C_l, P are the hypotenuses of similar right-angled

triangles.

o h and f are (positive) numbers, z is a positive co-ordinate

and x, P_l, P_r are co-ordinates that may be positive or

negative, we can then write:

(Eqn 2.19)

● and similarly from the right hand side of Figure 9.10

(Eqn 2.20)

● Eliminating x from these equations gives

(Eqn 2.21)

● and

(Eqn 2.22)

● Notice in this equation that P_r - P_l is the detected disparity in

the observations of P.

● If P_r-P_l = 0 then z = \infinity.

● Zero disparity indicates the point is (effectively) at an infinite

distance from the viewer.

40
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

3. Description of the IRIS engine

41
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

3.1 Components of IRIS

Structural descriptions of various vision systems may vary with

possibly minor localised differences in most cases. The structure

presented here is motivated by our ongoing work on a vision system

for ‘intelligent’ machines (mobile or otherwise) called IRIS.

For ease of design, a system like IRIS is composed of two related,

interdependent segments. As of now, they are:

● IRIS-XT: This is the segment primarily responsible for

preprocessing incoming images to compensate for inadequate

quality, luminance, sharpness, contrast, color distribution and a

host of other attributes. It is also responsible for performing 2D

machine vision tasks like line-following and shape recognition.

IRIS-XT works primarily using two color spaces, RGB and HSL.

Some of the tasks are mathematical regression (line-following),

quadtree decomposition (color recognition) and perimeter

sampling (shape recognition). More detailed descriptions of a

generic IRIS-XT-like image processing system are given later.

● IRIS-3D: This is the segment primarily responsible for analysis,

reconstruction of 3D models and stereovision. Some operations

that may be performed upon the image in this stage are space

carving, stereoscopic vision and 3D map building combined with

localisation. Success in the set task is achievable by using one or

a combination of these and other techniques. A basic set of

techniques required for a IRIS-3D-like system is discussed later.

In addition, several extensions to IRIS also exist which further

assist in abstracting the hardware details of the robot from the

algorithm programmer. These are discussed later under IRIS

Extensions.

42
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

3.2 The data structures: IRIS Foundation

3.2.1 What is IRIS Foundation ?

IRIS Foundation contains all the data structures required by the other,

higher-level modules. It also contains many algorithms (trivial or

otherwise) which are frequently used by the vision modules. Many of

its structures are templatised, so that they can be used in a variety of

situations.

3.2.2 A rough structural description

IRIS Foundation resides in the namespace Comrade::IrisFoundation, so

to use it, you'll either have to refer to its data types and functions in a

fully qualified fashion, or bring in the whole thing with the using

directive.

The classes currently implemented in the IRIS Foundation are as

follows:

● BitmapStreamer: This class is a filter for reading and writing to

24-bit bitmap files. Filters for reading other formats were not

designed intentionally because in the final version, IRIS-XT and

IRIS-3D will read in the images from the memory itself (placed

there by the framegrabber driver libfg for Linux).

● RGB and RGBstruct: These two data structures are for storing

RGB values for use by other modules. RGBstruct is the

normalised version while the values of components in an RGB

structure can be between 0 and 255. The RGB model is one of

several color spaces.

● HSLstruct: This data structure is another way of representing

color, and is used by the image processing algorithms more often

than the RGB and RGBstruct types. HSLstruct represents the HSL

color space.

43
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● ColorSpaceConvertor: This class encapsulates the conversion

functions between the RGB and HSL color spaces. Note that this

operates only on individual pixels.

● Buffer: This is the single most important class used by the

higher modules. It is mostly used to store images in a way

similar to bitmaps. Being templatised, it can represent RGB-style

or HSL-style images (or any other image format that may be

used). It is also used for other purposes like camera flag arrays

in 3D reconstruction. It is resizeable and supports deep copy

semantics.

● RGB_BufferManager: This class operates exclusively on RGB

Buffer objects and decouples the Buffer class from the actual

source of a RGB image. In addition, it supports copying and

pasting of rectangular blocks between RGB blocks.

● BufferConvertor: This class has a number of static functions

which are used for converting between Buffer structures of

different color spaces. Most image processing routines using the

HSL color space for operation make use of the functions in this

class.

● Tree: This class is used for pyramidal image representations.

Pyramidal representations allow representation of scenes at

different scales, thus permitting variable scale-space analysis.

Currently, only the quadtree segmentation code uses this class,

but more applications of this class are expected soon.

● QuadtreeSegmenter: This class performs quadtree

segmentation upon images using the Tree structure. Parameters

can be varied to give segmentation at different scales.

In addition, there are other classes like ByteStreamer and functions

like min() and max(), but these are not meant to be used directly by

the application programmer.

44
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

3.3 The image preprocessor: IRIS-XT

3.3.1 What is IRIS-XT?

IRIS-XT is the component of the IRIS vision system which is

responsible for basic image processing tasks as well as 2D machine

vision functions like line following and object detection, IRIS-XT uses

the classes defined by IRIS Foundation and also defines some data

structures of its own. IRIS-XT is the second oldest component of the

entire system and thus is reliable and easy to use.

Detailed documentation is not the aim of this section, which provides a

general overview of IRIS-XT's structure, so as to give the potential

reuser a better inital understanding of the system architecture.

3.3.2 Architecture of the IRIS-XT subsystem

45
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

3.3.3 A rough structural description

IRIS-XT resides in the namespace Comrade::IrisXT, so to use it, you'll

either have to refer to its data types and functions in a fully qualified

fashion, or bring in the whole thing with the using directive.

The classes currently implemented in the IRIS-XT are as follows:

● KernelMatrix: This structure holds the values of the kernel

during the convolution of an image with a mask. It can be of any

size, and can be generated automatically in some situations like

edge detection and Gaussian masking by setting appropriate

parameters to desired values.

● KernelOperator: This class is responsible for the actual

convolution process between a HSL image and a KernelMatrix

mask. It also perform greyscale convolution of a RGB image.

● KernelGenerator: This class can generate special standard

masks which are used frequently enough to warrant automated

generation. Most of these masks are used different edge

detectors. They are:

1. Roberts' cross operator

2. Sobel's operator

3. Prewitt's operator

4. Isotropic operator

5. Laplacian operator (zero crossing operator)

Other than that, there is the Gaussian kernel which is used for the

Canny edge detector.

● EdgeDetectorManager: So as to ease programming, this class

shields the programmer from explicitly defining kernels for edge

detection. The kernels are generated internally by calling the

appropriate function and passing the specified arguments.

46
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● CA_EdgeDetector: This class implements a very simple, but

useful edge detector of my own design. It is based on the

principles of Cellular Automata, and it is certainly faster than

convolution, though the results show some noise. But it may be

adequate for most purposes.

● AlgorithmManager: This class encapsulates all functions which

cannot be achieved using kernel convolution. There are several

functions defined here, and all are useful in their own right. They

are:

1. Dilation

2. Erosion

3. Conversion to greyscale image

4. Conversion to negative image

5. Independent RGB channel adjustment

6. Unsharp masking

7. Range compression

8. Contrast stretching

9. Histogram equalisation

In addition, there are some internal functions which perform

calculations on images, but these are not meant to be accessed by the

programmer.

● StraightLineDetector: This class performs the Hough

Transform on an image already processed by an edge detector

and determines possible straight lines. The result is an angle

with respect to some reference axis. This is currently under

development, i.e., not tested thoroughly as yet. Actually, another

function regression() is also capable of finding straight lines but

is more susceptible to noise, though faster.

47
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● BasicCircleDetector: This class performs the Hough Transform

on an image already processed by an edge detector and

determines possible circles. The result is a coordinate pair with

respect to some reference axis, and the radius of the circle

detected. This is currently under development, i.e., not tested

thoroughly as yet.

● BasicShapeDetector: This class, together with the

StraightLineDetector and CircleDetector class, forms the Hough

Transform Engine. This class performs the Generalised Hough

Transform on an image, and will detect arbitrary shapes even in

the presence of noise and/or occlusions.

● ShapeSampler: This class is used to sample edge-detected

shapes, i.e., build a table of distances between some point and

the (potential) perimeter of a shape in increments specified by

the programmer. This gives a shape table which may be

correlated with some stored shape table or may be used as a

prototype shape table for future matching by direct comparison.

This class is also used by the Hough Transform Engine.

● SequenceAnalyser: This class is used to correlate shape tables

to provide a measure of the degree of correlation between them.

The presence of noise and false terminations is accomodated for

by providing a cumulative error tolerance model. This provides

an alternative to the Hough Transform Engine, but more work is

required to increase the robustness of the method used.

Besides these, there is an experimental skeletoniser algorithm which

awaits further development. Also note that most of the functions

implemented in IRIS-XT can be applied to any rectangular region

within an image, instead of the entire image. This provides

opportunities for optimisation.

48
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

3.4 The 3D reconstruction system: IRIS-3D

3.4.1 What is IRIS-3D?

IRIS-3D is the component of the IRIS vision system responsible for

endowing COMRADE with a sense of the third dimension - depth,

distance, whatever you call it - thus enabling us to program robots to

perform even more complex tasks.

IRIS-3D is a newer component of the IRIS system and thus is

extremely prone to changes (almost daily in an average). But most of

the architecture is in place; it remains to tune the algorithms or

replace them using better/faster ones. IRIS-3D already shows

promising results, and will only get better with time.

3.4.2. Architecture of the IRIS-3D subsystem

49
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

3.4.3 A rough structural description

IRIS-3D resides in the namespace Comrade::Iris3D, so to use it, you'll

either have to refer to its data types and functions in a fully qualified

fashion, or bring in the whole thing with the using directive.

The classes currently implemented in the IRIS-3D are as follows:

● Matrix4x4: This structure is almost exclusively used for

homogeneous 3D operations on a point. For efficiency purposes,

therefore, its dimensions are fixed to 4-by-4.

● Coordinate: This is IRIS' basic 3D point structure. It can be

translated, rotated or multiplied by any arbitrary Matrix4x4

object. Note that the axis of rotation can also be arbitrary, thus

making this a very flexible structure at the lowest hierarchical

level.

● Voxel: This represents the basic volume element in 3D space

and is used in the 3D space carver engine. It is important to note

that since the voxel is a finite cube, its footprint will be more

than one pixel if it is 'projected' onto a screen during a projective

transformation.

● Sensor: This class represents the mathematical model of the

imaging sensor, i.e., the camera. Strictly speaking, there should

be other functions in addtion to the ones present to optimise the

calibration matrix of the camera in a least-mean-squares sense.

Also, the camera model should also model (at a minimum) a

first-order projective distortion. All of this is currently being

worked upon, though the model as it is adequate for

approximate results.

● VoxelWorker: This class is responsible for calculating various

mathematical interactions of a Voxel object with its environment;

for example, determining the footprint of a voxel on an arbitrary

plane.

50
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● WorldSpace: This represents a cuboidal arrangement of voxels

(a 'box') and is used by the space carver engine to reconstruct

the model from its N projective views within this space.

Besides the above, there are a few other data structures like Point and

Parametric, but they are not for direct use by the programmer.

3.4.4 Stereovision and space carving

The two most important algorithms in IRIS-3D are currently not

encapsulated inside classes because they are not the final versions.

Nevertheless, they still provide useful results. They are as follows:

1. Stereovision algorithm: It enables binocular stereoscopic

vision, by analysing pairs of images. Currently, the method

implemented is a fixed-window correlation method, which gives

useful results already. However, this causes the so-called corona

effect at discontinuities, in addition to being slow. For this

reason, a new fast multiresolution, variable window, stereovision

algorithm has been designed. Initial results are already

interesting.

2. Space carving engine: This allows the robot to reconstruct the

3D model of an object (upto an approximation) from N calibrated

views of the same. This uses the basic space carving algorithm

given by Kyros Kutulakos. Currently, it performs reconstruction

with a very good degree of accuracy. Photorealism will involve

mapping the image texture onto the model, and is nice to look

at, but not very useful right now. Also, until semiautomatic

camera calibration is brought online, this will not be of much use

because it requires the camera positions to perform its

calculations.

3.5 Brief description of a new stereovision algorithm

The spirit of the algorithm is based on the premise that for most

purposes, depth maps of subpixel precision are not necessary.

However, there will arise situations where calculations at high
51

Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

resolutions is required. This algorithm addresses this need effectively.

The basic stereo algorithm based on area matching uses windows of

fixed size which cause the so-called corona effect at discontinuities.

This algorithm shows how to avoid that effect and simultaneously

achieve multiresolution stereo vision in realtime.

Introduction

The problem of stereo vision is a much-studied one; several

solutions have been proposed. Most of these solutions are concerned

with the recovery of accurate depth maps with minimum number of

mismatches. These algorithms are ranked with reference to some

ground truth. However, they are not suited for realtime

implementation, not at least without the use of specialised hardware.

Moreover, it is to be noted that humans do not need an especially

accurate depth map for reasonable stereo vision. That is, if the errors

in recovering the depth map are kept below some maximum level, it is

to be expected that most of the relevant informmation can still be

recovered without significantly affecting plant performance.

This is the basic compromise that our algorithm makes. It

forgoes complicated analyses which might determine and compensate

for the effects of occlusion and other effects. However, the possible

resulting loss in performance is made up to a very large extent by

using the variable window approach. The resulting performance in

terms of speed is very good, with errors kept within acceptable limits.

Indeed, we intend to use this particular approach to build 3D models of

the environment in realtime, which involves the fusion of multiple

depth maps. Most errors in the individual depth maps are averaged out

in the final 3D map.

These are the following steps of the algorithm:

● Segment the left (or right) image using quadtree segmentation

with some set parameters.

52
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

● Correlate the blocks of the left (or right) image with its exact

counterparts in the right (or left) image. Assign uniform depth to

each block separately.

53
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

4. Platform issues

54
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

4.1 Intoduction

A discussion on programming platform and optimisation issues is

essential when considering a (largely) platform independent design. At

this point, it is impossible to be general. Thus, specific references to

operating systems and processors will be made throughout this

discussion.

As emphasised throughout, the faster the available processor,

the better. However, support, maintenance and readily available

information upon a chosen processor are also important criteria for

processor selection. Currently, this implies working largely on the Intel

x86 platform. IRIS is projected to run (very slowly) on a baseline

configuration speed of 200 MHz. Higher speeds will improve its

performance.Information on the Intel x86 platform is easily available.

We demonstrate the IRIS vision system running on a Pentium IV 2.4

GHz uniprocessor mounted on the robot itself.

However, alternatives are not impossible. We can easily envisage

running IRIS on the current generation of ARM processors. The Intel

StrongARM SA-1110 and its variations are rated well for their low

power consumption and high speeds. These characteristics make them

suitable for functioning in embedded microprocessor environments

needing machine vision. However, the peak performance of the

SA-1110 is equivalent to a 500 MHz Celeron processor; thus IRIS in its

complete form will not run fast enough. Instead, a stripped version of

IRIS, named IRIS-Lite is being planned to fit into a smaller memory

and processing footprint.

IRIS has been developed using Standard C++. This (and C) is

the language of choice for any programmer desiring speed and

economy of expression. Standard C++ mandated by the ANSI/ISO

X3J16 Committee is being used. No nonstandard features or libraries

are being made use of. Thus, the basic IRIS system is capable of being

compiled under Windows or Linux environments without a single glitch.

55
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

However, a study of the assembly language generated by current

C++ compilers reveals that the quality of the code leaves much to be

desired. Ideally, we should waste no more cycles than necessary. But

that means writing IRIS entirely in x86 assembly language, rendering

it nonportable. Thus, the best approach is to write the majority of IRIS

in C++, substituting assembly language in time-critical sections of the

code. A generic C++ version of IRIS will also be available for processor

platforms not supported by IRIS at the machine code level. The

assembly part of the code will have to be rewritten for the particular

processor used, resulting in several optimised ports of IRIS, and one

Standard C++ port.

4.2 The Win32 platform

There are, of course, differences between the two versions. IRIS

was designed with the Linux platform in mind. However, platform

independence was achieved in most areas because the bulk of IRIS

algorithms were written under the Win32 platform. Here we describe

the Win32 platform development system.

Operating system Windows 95/98/Me/NT/200/XP

Compiler system MinGW system (gcc 3.3.1)

Development environment Dev-C++ 4.9.8/ MinGW Developer

Studio 2.05

Minimum processor make, speed

and RAM

Pentium MMX (200 MHz) with 32

MB RAM

Recommended processor make,

speed and RAM

Athlon XP (2.4 GHz) with 192 MB

RAM

56
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

4.3 The Linux platform

Linux was the real target operating system IRIS was designed

for. The full functionality of IRIS is apparent when run on Linux, since

many system-dependent features (like accessing the USB webcam and

proper CPC functionality) are coded specifically for Linux.

Operating system (Linux build) Debian (unstable Fedora core)

Compiler system GCC system (gcc 3.3.3)

Development environment Anjuta

Minimum processor make, speed

and RAM

Pentium MMX (200 MHz) with 32

MB RAM

Recommended processor make,

speed and RAM

Athlon XP (2.4 GHz) with 192 MB

RAM

4.4 Fast interface design using FLTK

Interface is a major design component in any software which

aims to interact with the user. IRIS is intended to run as a library

under the COMRADE Preproduction Core, thus does not require a front

end. However, the offline demo of IRIS requires the user to interact

with it as an application, not as a library. Thus, fast interface design is

a necessity. To this end, we have used the FLTK (pronounced “fulltick”)

library for GUI development. FLTK stands for Fast Light Tool Kit. It

excels at rapid deployment of GUI’s in a consistent fashion. In fact, the

GUI development for IRIS was completed in FLTK in less than eight

hours. The version of FLTK used is FLTK v2.00 (unstable version).

57
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

5. Results from the IRIS engine

Below we present some results after processing using the IRIS engine.

They are presented in no particular order, and represent only a fraction

of the potential of IRIS.

58
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

59
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

60
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

Screenshots of the IRIS Offline Preproduction Core

61
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

62
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

6. Extensions and improvements

63
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

6.1 Introduction

These are extensions and improvements currently being planned for

IRIS. Some are already in the development stage (though untested)

and the others are still in the design phase.

6.2 IRIS Extensions

6.2.1. The Osiris abstraction system

Until the day, robot production is as standardised as that of computers

or cars, they will have very different hardware implementations. The

entire architecture may vary radically from robot to robot depending

upon the intended application. This means that the software has to be

written specifically for each robot. This causes waste of coding

man-hours. To this end, the Osiris abstraction system is being

developed as an adjunct to the IRIS system. Osiris is not related to

IRIS as such, but grew out of our need to make IRIS fit into a host of

(possibly) different software environments.

When finished, Osiris will provide a unified software model for the

algorithm developer who will not have to worry about the underlying

specifics and intricacies of the robot hardware involved. It will abstract

away the sensor models as well as the control signals needed to be

sent to the robot. This will be in the form of a layered query-based

system which will be maximally modular and reuseable.

6.2.2. COMRADE Runtime

COMRADE will have different levels of control. It may assume

autonomous control, or it may be issued commands by the user, or it

may be used in its offline state. All these different methods of control

ultimately pass the same basic commands to the robot proper; only

the method of issuing them differs depending upon the interface. The

COMRADE Runtime system is what allows multiple control interfaces to

be hooked up to the COMRADE interpreter system, so that any desired

64
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

form of control may be implemented with minimal reorganisation of

the code.

6.2.3. The BorgCode decompositor

One of the most important (but late) stages of Project COMRADE

is projected to be the development of an easy and extensible

cooperative task-solving platform. There are several levels of

complexity that we can build into the system, but whatever the

solution adopted, it must be integrated seamlessly into the current

architecture. Here, we present a (very) brief proposal for a high-level

hybrid robot communications scripting language, called BorgCode.

Note that this is very preproduction and has not been implemented

yet; options are still open.

BorgCode allows the end-user to specify high-level directives in a

sequential fashion which are then decomposed by the BorgCode

Decompositor (BCD) into separate parallelly executable chunks of

code, after which the rest of the cooperative environment operation

follows. BorgCode is simple, because inspite of any

complicated-looking code, internally it is interpreted as a state

machine with a (hopefully) simple implementation.

BorgCode does not solve everything; further contention

resolution is required among the machines. I'll develop a possible

structure for a signal buffer and a scheme of contention resolution

later.

A First Example

An example directive:

000 START

010 UNITS=1: LineFollow,ObjDetect;

020 UNITS=4: AutoExplore, MapBuild;

030 IF (REF(10):UNITS(1).ObjDetect==TRUE)

65
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

040 [

050 REF(20):UNITS(2 OF 4).Go(REF(10):UNITS(1).Target);

060]

070 IF (REF(10):UNITS(1).TimeOut==TRUE)

080 [

090 REF(10):UNITS(1).Stop

100 REF(20):UNITS(4 OF 4).Stop

110]

120 END

The BorgCode script is loaded into the Main Node. The script is

initially completely sequential; it is the job of the BorgCode

Decompositor to break down the code into parallelly executable chunks

of code. Along the way, signals to respond to as well as contention

resolution must be performed. However, these functions are not

performed by the decompositor; the field machines do this themselves.

Thus, the above script may be decomposed as below:

Chunk 1

010 UNITS=1

Signal(START): ResetTime,LineFollow,ObjDetect

Signal(OBJ_DET_TRUE,010): ResetTime,Multicast(OBJ_DETECT_TRUE,010)

// Note that this code is not wrong, the signal buffer can be filled by external
multicast data as well as those from the machine's own program itself. The program
generates this signal in the machine's buffer, which the machine then multicasts to
the others. The signal also contains target information.

Signal(TIME_OUT_TRUE): Stop

ENDS 010

Chunk 2

020 UNITS=4

Signal(START): ResetTime,AutoExplore,MapBuild

Signal(OBJ_DETECT_TRUE,010): ResetTime,Go(OBJ_DETECT_TRUE.Target,010(1))

// The (1) is there if more than one machine were assigned to detection and detected
positive.

Signal(TIME_OUT): Stop

ENDS 020

66
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

The above solution involving chunks has a problem. Note the line from

the first program:

050 REF(20):UNITS(2 OF 4).Go(REF(10):UNITS(1).Target);

Here, 2 of the 4 units are supposed to go to that target.

However, nowhere is this mentioned in the second chunk. The reason

that we can separate this part out of the program easily from the

program is because we can also scan for the UNITS(x OF Y)

statements for this. But such a situation may easily occur many times.

We can do this by introducing a general signal-based solution into

BorgCode; by introducing the VOTE_WIN signal. The new chunks

would thus be:

Chunk 1

010 UNITS=1

[

Signal(START): ResetTime,LineFollow,ObjDetect;

Signal(OBJ_DET_TRUE,010): ResetTime,Multicast(OBJ_DETECT_TRUE,010);

// Note that this code is not wrong, the signal buffer can be filled by external
multicast data as well as those from the machine's own program itself. The program
generates this signal in the machine's buffer, which the machine then multicasts to
the others. The signal also contains target information.

Signal(TIME_OUT_TRUE): Stop;

];

Chunk 2

020 UNITS=4

[

Signal(START): ResetTime,AutoExplore,MapBuild;

Signal(OBJ_DETECT_TRUE,010): UNITS=2

[

Signal(VOTE_WIN): ResetTime,Go(OBJ_DETECT_TRUE.Target,010(1))

Signal(REACHED): Stop;

];

// The (1) is there if more than one machine were assigned to detection and detected
positive.

Signal(TIME_OUT): Stop;

67
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

];

The extra syntax is there for ease of parsing. More information

regarding BorgCode syntax will be released progressively with further

refinements.

68
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

7. The future

69
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

7.1. Summary

This report described the current state of the IRIS vision engine.

Though it is yet to support very advanced routines like automatic

camera calibration (which involve complex algorithms like

Levenberg-Marquardt minimisation), these will soon be incorporated

over time into the easily extensible framework. Development on IRIS

continues even as this written, and it is foreseeable that IRIS will be a

contribution, even if a minor one, to the machine vision community.

7.2. Applications

● Real time industrial applications

● Remote surveillance machines like planetary rovers

● Offline/online satellite imagery analysis and reconstruction

● Commercial image processing applications

● As a testbed for more advanced machine vision algorithms

7.3 Conclusion

Machine vision is a massive field. It is plain impossible to attempt to

summarise all current developments. Emergence of new technologies

has resulted in cheaper sensors and MEMS (micro-electro-mechanical

system) arrays. It is clear that software cannot fill all the needs of

machine vision. Analog solutions are needed. Nevertheless, software

vision analysis systems will continue to thrive in the near future. IRIS

is a simple, yet effective solution to this end. Theoretical advances like

cellular neural networks and pulse coupled neural networks are also

paving the way for an unstoppable synergy between hardware and

software. As the pace of these developments accelerates, only the

future can tell what lies in store for machine vision.

70
Dept. of E&C Feb – June 2004

IRIS: A machine vision system for AGV’s

THE END

71
Dept. of E&C Feb – June 2004

