
United States Patent (19)
Caldwell et al.

USOO5778232A

11 Patent Number: 5,778,232
45 Date of Patent: Jul. 7, 1998

54 AUTOMATIC COMPLER RESTRUCTURING
OF COBOL PROGRAMS INTO A PROC PER
PARAGRAPH MODEL

(75) Inventors: Jeffrey B. Caldwell. Sunnyvale: Harry
Charles Muttart. Cupertino; David
Henry Gross, Campbell, all of Calif.

73) Assignee: Hewlett-Packard Company, Palo Alto,
Calif.

(21) Appl. No.: 675,174
(22 Filed: Jul. 3, 1996
(S1) Int. Cl. ... G06F 9/45
52 U.S. Cl. ... 395/707; 395/709
58) Field of Search 395/705, 707,

395/709,500

(56) References Cited

U.S. PATENT DOCUMENTS

4.567,574 1/1986 Saade et al. 364/900
4.649,480 3/1987 Ohki et al. 395/709
5,193.190 3/1993 Janczya et al. 395/700
5,428,793 6/1995 Odnert et al. 395/700
5.535.394 7/1996 Burke et al. 395/700
5.577.253 11/1996 Blickstein 395/705

OTHER PUBLICATIONS

"Incremental Global Optimization for Faster Recoupila
tions". Pollock L.L. et al. Int'l Comference on Computer
Languages. pp. 281-290. Mar. 1990.
"The Influence of Language Semantics on Program Slicing".
Hwang J. C. et al., Proc. Int'l Conference on Comp. Lan
guages, pp. 120-127, Oct. 1988.

"Region -Based Compilation: An Introduction and Motiva
tion". Hank R. E. et al. Proceedings of the MICRO-28, pp.
158-168, Dec. 1995.
"Object-Oriented COBOL Recycling", Sneed H. M. Pro
ceedings of the WCRE '96, pp. 169-178, Nov. 1996.
"Interprocedural Analysis vs. Procedure Integration". Rich
ardson S. et al., Information Processing Letters, v32. n3. pp.
137-142, Aug. 1989.
"Using Profile Information to Assist Classic Code Optimi
zations". Chang P. P. et al., Soft-Practice and Experience.
v21 in 12, pp. 1301-1321. Dec. 1991.
Primary Examiner Edward R. Cosimano
Assistant Examiner-Kakali Chaki

57 ABSTRACT

A compiler for compiling and optimizing a COBOL pro
gram. The invention is embodied in a front end that reads the
COBOL program and generates an intermediate representa
tion that can be optimized by later stages of the compiler.
After reading the COBOL program, the compiler first coa
lesces the paragraphs into procedures. If a paragraph's
preceding paragraph is not a potential exit point, then the
paragraphs are coalesced. Next, the basic block counts of the
procedures are estimated. If a basic block count exceeds a
predetermined limit, then basic blocks are sliced from the
procedure. placed into a new procedure, and a call to the new
procedure is inserted into the sliced procedure. Finally, the
compiler generates a super-procedure from the sliced pro
cedures. The super-procedure implements the control flow
of the original COBOL program. Because the resulting
program behavior resembles that of a C, C++, or Fortran
program, the compiler can use C. C-H or Fortran compiler
technology to optimize the COBOL program.

20 Claims, 5 Drawing Sheets

SAVE CURRENT PROCORE
AND CREATE NEW

CURRENPROCEDURE

U.S. Patent Jul. 7, 1998 Sheet 1 of 5 5,778,232

11 13 14 15

CPU I/O COMMUNICATIONS u-16
ADAPTER ADAPTER

acaAA USER
e2. INTERFACE Ef

170 ADAPTER

2 17 18
17 C32 FIC. 1

C. C.

y 150 L-160
NETWORK

210 SOURCE CODE

HIGH LEVEL
OPTIMIZER

BACK-END AND LOW
LEVEL OPTIMIZER

OBJECT FILE

FIG. 2

212

214

216

218

U.S. Patent Jul. 7, 1998 Sheet 2 of 5 5,778,232

FIG. 3

LOAD SOURCE CODE 310
AND CREATE IR FIG. 4

312 410
NO-1PARAGRAPHS

IN IR2 RECLASSIFY
ENTRY POINT

314 SET CURRENT PROCEDURE

SET PRECEEDING PARAGRAPH

AUGMENT ATTRIBUTES

412

MARK NEW
PRIMARY ENTRY POINT

COALESCE
PARAGRAPH

SAVE CURRENT PROCEDURE
AND CREATE NEW

CURRENT PROCEDURE

REMAINING
PARAGRAPHS

?

U.S. Patent Jul. 7, 1998 Sheet 3 of 5 5,778,232

FIC. 6

START

CURR_BB_COUNT = 0

512

REMAINING NO
NSTRUCTIONS

YES

CURRINST =
NEXT INSTRUCTION

LOOK UP BASIC BLOCK COUNT

BEGINNING
OF LOOP OR
CONDITIONAL

BLOCK?

UPDATE
BB COUNT

516

518

520 PUSH ON STACK

CURRBB COUNT = 0

END OF
LOOP OR CONDITIONAL

BLOCK2
526

POP STACK

CALCULATE INSTRUCTION COUNT

U.S. Patent Jul. 7, 1998 Sheet 4 of 5 5,778,232

FROM FIG. 5
FIG. 6

BUILD LIST OF TOP LOOPS

FIND MEMBER WITH GREATEST 612
BASIC BLOCK COUNT

614
BBMI 2 YES
BB COUNT

p

w MARK BEGINNING AND END
OF PROCEDURE

NESTED
LOOPS

618 MARK BEGINNING AND
YES END OF LOOP

BUILD LIST OF
OUTERMOST LOOPS 622

FIND MEMBER WITH GREATEST
BASIC BLOCK COUNT 624

BBLMIT 2
BBCOUNT

626
YES

CREATE NEW PROCEDURE 628

630
YES ADD CODE TO TEST

RETURN 632

NO

UPDATE BBCOUNT UPON BECON, -654

NON
LOCAL GOTO

p

U.S. Patent Jul. 7, 1998 Sheet 5 of 5 5,778,232

FIC. 7
FROM FIG. 6

BUILD LIST OF
N-LINE CODE BLOCKS

712

710

LIST X
BBLMIT

YES

FIND ELEMENT WITH
GREATEST BLOCK COUNT

BLOCK COUNT
> BBLMIT

?

CREATE NEW PROCEDURE
WITH FIRST INSTRUCTIONS

UPDATE BASIC BLOCK COUNT

722
CREATE NEW PROCEDURE
WITH ALL INSTRUCTIONS

720

5,778.232
1

AUTOMATIC COMPLER RESTRUCTURNG
OF COBOL PROGRAMS INTO A PROC PER

PARAGRAPH MODEL

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to compiler design and
more particularly to a system and method of restructuring
the control flow of a COBOL application to allow an
optimizing compiler to perform more effective optimizing
code transformations.

BACKGROUND OF THE INVENTION

As discussed by Pratt, "Programming Languages Design
and Implementation." Prentice Hall, Inc.. 1975, pp. 360-84,
which is hereby incorporated by reference, COBOL is a
high-level language used primarily for business applications
of computers.
A COBOL program can be described as a series of

Statements grouped into constructs called paragraphs. Para
graphs may, in turn, be grouped into constructs called
sections. Standard control flow in a COBOL program starts
execution at the first paragraph. When execution of the first
paragraph is completed, control flow then enters the next
paragraph.

This standard control flow can be changed by use of the
GO TO and PERFORM statements. A GO TO statement
transfers control flow to the beginning of a paragraph. A
PERFORM statement also transfers control to the beginning
of a paragraph. A PERFORM statement differs from a GO
TO statement in that when the paragraph end is reached,
control flow is returned to the statement following the
PERFORM statement provided that this is the last paragraph
that was PERFORMed. The PERFORM statement is imple
mented using a stack.
The structure of COBOL programs is significantly differ

ent than that of other, more common programming lan
guages such as C, C++, and Fortran. Because those lan
guages are more popular for new application development,
current advances in industry optimization techniques are C.
C-H, and Fortran-centric. SPEC benchmarks and academic
research in the field of compiler optimizations. for example,
are based on C, CH, and Fortrain. Therefore, the more a
program looks like C, C++, or Fortran, the better the
performance results that a program will receive from indus
try optimization technology.

In addition, most system code is written in C or C++.
Accordingly, as new architectures appear, code generation
and optimization for C is the first implemented. The fewer
non-C features that are used in a compiler front-end, the
earlier in the development process it can be supported by the
code generator. Moreover, industry optimization efforts have
limited resources. Because C, C++, and Fortran are more
popular than COBOL, many optimization techniques are not
even implemented for COBOL systems.

Furthermore, current industry Low Level Optimizer tech
nology performs transformations on a program code stream
on a procedure by procedure basis. Optimization processing
time grows geometrically based on the size of a procedure.
If a procedure is too large, the memory and time require
ments of an optimizer prohibit the effective optimization of
the procedure. If a procedure is too small, the effectiveness
of the Low Level Optimizer is restricted because the scope
of instructions on which it may operate is too small to be
effective. Therefore, allowing a compiler to have explicit
control over the size of any given procedure is useful.

5

15

25

35

45

50

55

65

2
Accordingly, there is a need in the art for a system and

method for altering COBOL program structure to appear to
optimization technology is if COBOL programs were com
mon C, C++, or Fortran programs.

There is also a need in the art for a system and method for
customizing the size of procedures passed to a Low Level
Optimizer in order to allow efficient optimization without
memory overflow.
There is yet another need in the art for a system and

method to customize the size of procedures to provide a
larger range of instructions for an optimizer to schedule.

SUMMARY OF THE INVENTION
The above and other needs are met by a system and

method of compiling a COBOL program that removes all
paragraph calls and inter-paragraph GOTOs from the pro
gram. In place of these constructs. the invention uses con
ventional procedure calls and returns.
The present invention is preferably embodied in a com

piler front-end. The compiler front-end takes COBOL
source code as input and outputs an intermediate represen
tation of the code that more closely follows the structure of
C, C++, and Fortran programs. The intermediate represen
tation can then be processed by other optimizers and com
pilers for eventual conversion to machine instructions in an
object file.
The inventive front-end follows three distinct steps to

transform the COBOL code: 1) paragraph coalescing; 2)
procedure slicing, also called producer chunking; and 3)
creation of a super procedure. The first step, paragraph
coalescing, combines adjacent paragraphs where possible.
This combination creates a larger block of instructions for
the optimizer to schedule across, resulting in more effective
latency hiding and intra-procedural dataflow analysis.
Briefly, paragraph coalescing is a process performed by
starting with the last paragraph in the Procedure-Division
and working backwards. Any paragraph that is a potential
return point of a PERFORM is combined with each prede
cessor paragraph until one of the predecessor paragraphs is
determined to be a potential return point. Then, the process
is repeated until all paragraphs are coalesced.
By placing more than one paragraph in a procedure,

paragraph coalescing produces many basic blocks per pro
cedure. A basic block is a sequence of machine instructions
with a single starting point and ending point such that when
the first instruction is executed, it is guaranteed that no
branches will be executed before the last instruction is
executed. Most compilers, however, have a limit as to the
number of basic blocks that a procedure may have in order
to perform effective optimization.
The inventive front-end controls the number of basic

blocks in a procedure by tracking the approximate number
of basic blocks in a coalesced procedure and implementing
procedure slicing. Procedure slicing. the second step,
removes sections of a procedure, creates new procedures
consisting of the removed sections of the original procedure.
and replaces the original code with calls to the appropriate
newly created procedures.

In the third step, the inventive front-end creates a super
procedure, or super-proc. A super-proc implements standard
COBOL control flow through paragraphs with no PER
FORMs or GOTOs. A PERFORM is implemented as a call
to the super-proc, which corresponds to a push onto the
PERFORM stack; a return from the super-proc corresponds
to a pop of the PERFORM stack. A GO TO is performed
either by returning a continuation index to the most recent
Super-proc invocation or by a direct jump within a coalesced
procedure.

5,778.232
3

A technical advantage of the present invention is that it
eliminates the use of a PERFORM stack and its associated
code instructions by transforming paragraph calls and
returns into procedure calls with explicit return points. This
transformation allows use of the standard system stack
instead of the historical use of a separate PERFORM stack;
as a result, COBOL control flow is altered to appear to the
optimizer as a C, CH, or Fortran program, which enables
better optimization.

Another technical advantage of the present invention is
that it combines appropriate paragraphs that have sequential
COBOL control flow fall through into a single procedure.
The fall through is then implicitly implemented and the
instructions required for end of paragraph return processing
are eliminated.

Yet another technical advantage of the present invention
is to allow customization of the size of procedures passed to
the Low Level Optimizer to allow more effective use of
standard industry global intra-procedural optimizations and
to control the amount of time and dynamic memory required
to optimize COBOL programs.
A further technical advantage of the present invention is

to allow COBOL programs to benefit from recent and future
innovations in compiler optimization technology.
A corresponding technical advantage of the present inven

tion is to allow more effective optimizing code transforma
tions to be performed by optimizing compilers.
A further technical advantage of the present invention is

it increases the maximum size of a program that can be
compiled and improves the compile speed of large programs
by customizing the compiler's memory usage on a per
procedure basis.
The foregoing has outlined rather broadly the features and

technical advantages of the present invention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the
subject of the claims of the invention. It should be appre
ciated by those skilled in the art that the conception and the
specific embodiment disclosed may be readily utilized as a
basis for modifying or designing other structures for carry
ing out the same purposes as the present invention. It should
also be realized by those skilled in the art that such equiva
lent constructions do not depart from the spirit and scope of
the invention as set forth in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present

invention. and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with
the accompanying drawings, in which:

FIG. 1 illustrates a computer system adapted to execute
the present invention:

FIG. 2 is a flow chart illustrating an overview of a
compiler structure according to the present invention;

FIG. 3 is a flow chart illustrating paragraph coalescing;
FIG. 4 is a flow chart illustrating further details of

paragraph coalescing;
FIG. S is a flow chart illustrating procedure slicing;
FIG. 6 is a flow chart illustrating loop slicing; and
FIG. 7 is a flow chart illustrating in-line code slicing.

DESCRIPTION OF THE PREFERRED
EMBOOMENTS

FIG. 1 illustrates computer system 10 adapted to execute
the present invention. Central processing unit (CPU) 11 is

10

15

25

30

35

45

50

55

65

4
coupled to bus 12, which in turn is coupled to random access
memory (RAM) 13, read only memory (ROM) 14, input/
output (I/O) adapter 15, communications adapter 16, user
interface adapter 17, and display adapter 18.
CPU 11 may be any general purpose CPU, such as a HP

PA-8000. CPU 11 preferably has a reduced instruction set
(RISC) architecture and supports 64-bit data words.
However, the present invention is not restricted by the
architecture of CPU 11. Thus, the present invention can be
adapted to work with other reduced or complex instruction
set computers supporting, for example. 32 or 128-bit data.
RAM 13 and ROM 14 hold user and system data and

programs as is well known in the art. I/O adapter 15 connects
storage devices, such as hard drive 150, to the computer
system. Communications adaptor 16 couples the computer
system to a local or wide-area network 160. User interface
adapter 17 couples user input devices, such as keyboard 170
and pointing device 171, to the computer system. Finally,
display adapter 18 is driven by CPU 11 to control the display
on display device 180. As is well known in the art, an
optimizing compiler embodying the present invention pref
erably resides on hard drive 150 and executes on CPU 11.

FIG. 2 is a flow chart illustrating the general structure of
a compiler system according to the present invention.
COBOL source code 210 is written by a programmer and
typically saved to a data file on hard drive 150. Next, the data
file is input to compiler front end 212. Front end 212
transforms the code into an intermediate representation,
which is then input to high level optimizer 214. High level
optimizer 214 again transforms the code and outputs the
resulting intermediate representation to back end and low
level optimizer 216. Optimizer 216 produces machine
instructions which are saved in object file 218 for eventual
linking and execution.
The present invention preferably resides in front end 212

and transforms the COBOL source code 210 into an inter
mediate representation allowing more effective optimization
to be performed by optimizers 214 and 216. As mentioned
above, the inventive front-end follows three distinct steps to
transform the COBOL code: 1) paragraph coalescing; 2)
procedure slicing, also called producer chunking; and 3)
creation of a super procedure. Each step is discussed in
detail below.

Paragraph Coalescing
Due to the relatively small size of COBOL procedures in

a typical COBOL application, the paragraph level may be
too small a granularity to map to procedures. To address this
issue, the present invention combines adjacent paragraphs
where possible. This combination allows a larger block of
instructions for the optimizer to schedule across which
enables more effective latency hiding and intra-procedural
analysis.
As is well known in the art, a COBOL program uses a

stack, called the "perform stack" to track the return address
of paragraphs executing PERFORM statements. Each time
a PERFORM statement is executed, the return address of the
calling paragraph is pushed onto the perform stack. When
execution of the PERFORMed paragraph is completed, a
return address is popped from the perform stack. Execution
then resumes at the return address.

Aparagraph is not coalesced with its preceding paragraph
if the preceding paragraph can result in a pop of the COBOL
perform stack. This rule is necessary to maintain a single,
well defined return point on which the optimizer will
operate, and to allow the super-proc (discussed below) to

5,778.232
5

properly manage a conceptual perform stack. All other
paragraphs can be coalesced.
Once coalesced, the actual implementation of the perform

stack is embodied in the standard system stack within
computer system 10 while the conceptual implementation of
the perform stack is embodied in invocations of the super
proc. Therefore, any paragraph with an end point that is a
potential perform return point must return processing back
to the super-proc to determine appropriate actions. If this
return were not done, then it would be necessary to pass
additional state information into every call of a procedure
indicating when and whether the procedure should return.

FIG. 3 is a flow chart illustrating the paragraph coalescing
function. At step 310, the Compiler reads the entire COBOL
program and translates the program into an internal repre
sentation (“IR”). At step 312, the Compiler checks to see if
there are any unprocessed paragraphs in the IR. If there are
no more paragraphs, the Compiler is finished with the
paragraph coalescing phase.

Otherwise, the Compiler examines the last unprocessed
paragraph in the IR by setting an internal variable.
CURRENT PROCEDURE, equal to the last paragraph
(step 314). The current procedure will consist of a single
entry point which represents the starting point of the single
paragraph that has been used to create the CURRENT
PROCEDURE.

Next, the Compiler sets the variable PRECEDING
PARAGRAPH equal to the paragraph immediately preced
ing the CURRENT PROCEDURE paragraph (step 316).
At step 318, the Compiler determines whether this preceding
paragraph is a potential return point. A potential return point
is a point that can result in a pop of the conceptual perform
Stack.

If the preceding paragraph is not a potential return point,
then the Compiler coalesces it into the current procedure
(step 320). As preceding paragraphs are coalesced into the
current procedure, the primary entry point is changed to an
alternate entry point in the current procedure and the newly
coalesced paragraph becomes the new primary entry point.

If the preceding paragraph is a potential return point (step
322), then coalescing into a CURRENT PROCEDURE is
completed. At this step, the CURRENT PROCEDURE
will be a procedure with a single exit point, a single primary
entry point, and zero or more alternate entry points. The
primary entry point will be the beginning of the paragraph
last coalesced into the CURRENT PROCEDURE. Each
alternate entry point corresponds to the beginning of the
other paragraphs in the current procedure. At the end of step
322, CURRENT PROCEDURE is set to the preceding
paragraph, if any. Next, the Compiler moves to step 324.
where it determines whether the IR contains any more
paragraphs to be processed. If so, the Compiler returns to
step 316.
The process of coalescing paragraphs is illustrated in the

flow chart of FIG. 4. At step 410, the current primary entry
point in the CURRENT PROCEDURE is reclassified as an
alternate entry point. Next, at step 412, the attributes of the
CURRENT PROCEDURE are augmented to indicate the
preceding paragraph is part of the CURRENT
PROCEDURE. At step 414, the beginning of the newly
coalesced paragraph (the preceding paragraph) is marked as
the primary entry point into the CURRENT
PROCEDURE.
Applying the method of FIG. 3 to a COBOL program

causes only certain types of paragraphs to be coalesced. If a
paragraph is not the target of any GO Tos or PERFORMs,

5

10

15

25

30

35

45

50

55

65

6
then it is always sequentially executed by the standard
COBOL paragraph control flow and can be coalesced with
its predecessor. In this case, the only path into the paragraph
is by paragraph fall through from its predecessor paragraph.

If a paragraph's predecessor is the target of a GOTO, but
not PERFORMs, and not the second argument of a PER
FORM THROUGH, and not the last paragraph in a section
that is target of PERFORM, and not the last paragraph in a
section that is the second argument of a PERFORM
THROUGH, then it will never return to a PERFORM
statement; therefore, it can be coalesced into the following
paragraph. As discussed below, control flow through a GO
TO is implemented by returning to the most recent super
proc frame with a "continuation" return value; the super
proc then dispatches to the target of the GOTO in its switch
Statement.

If aparagraph's predecessor is the target of GOTos and/or
PERFORM THROUGHs, but not a simple PERFORM, and
not the last paragraph that is the target of a PERFORM, and
not the last paragraph in a section that is the second
argument of PERFORM THROUGH, then it is not a poten
tial return point and can be coalesced. The target of a
PERFORM THROUGH is not a return point.
A paragraph that is the target of a simple PERFORM

statement is not coalesced with a preceding or subsequent
paragraphs. For reasons described above, such a paragraph
must have a single, well-defined return point back to the
super-proc which implicitly maintains the perform stack.
A paragraph that is the second operand of a PERFORM

THROUGH can be coalesced with preceding paragraphs but
cannot be coalesced with any subsequent paragraphs. This
rule is necessary because the paragraph is a PERFORM
return point. The most recent invocation of the super-proc
must determine if an actual return and “pop” of the perform
stack is necessary.

Procedure Slicing
Most industry optimizers have a limit to the number of

basic blocks that a procedure may have in order to perform
effective optimization. Due to the relatively small size of
paragraphs in a typical COBOL application, the coalescing
process model will probably not result in unduly large
procedures. However, paragraph coalescing and a few rare
application situations may result in a procedure too large to
allow effective processing by optimizer 216.

Accordingly, the present invention controls the number of
basic blocks in a procedure by tracking the approximate
number of basic blocks during front-end processing and
implementing "procedure-slicing." Procedure slicing
removes sections of a procedure, creates new procedures
consisting of the removed sections of the original procedure,
and replaces the original code with calls to the appropriate
newly created procedures.

Because the size of the removed, or sliced, section is
large, the incremental cost of the procedure call and return
will be more than recovered by the benefits of effective
optimization and scheduling of the new procedures.
Moreover, all COBOL variables are global and, therefore, it
is not necessary to pass references to any local variables into
a procedure slice. However, procedure call overhead cannot
be completely ignored. Therefore, slicing is performed only
when necessary and special care is taken to avoid slicing
inner loops as procedure call overhead in an inner loop will
have an adverse effect on performance since this would
negate the benefits of loop level transformations made by an
optimizer.

5,778,232
7

In general, procedure slicing is done by first estimating
the number of basic blocks in a coalesced procedure. If
number of basic blocks is above a predetermined limit, then
sections of code are sliced and placed into new procedures.
If slicing is required, then the Compiler first examines loops,
from the outermost loop inward, to see if an entire loop and
its control code consists of a large number of basic blocks
and must be sliced. Then, the Compiler examines normal
in-line code for slicing. Once a section of code is selected for
slicing, it is put into a new procedure and the original code
is replaced with a call to the newly created procedure.

Special steps must be taken when estimating the basic
block count of conditional blocks and loops. EVALUATE
and GO TO . . . DEPENDING clauses are first converted to
IF THEN-ELSE statements. The groups of instructions that
are conditionally executed within an IF or ELSE clause are
called "conditional blocks." The basic block count for a
conditional block is assigned to the IF or ELSE statement
preceding the block and includes the summation of all
instructions within the block. Similarly, the basic block
count for a loop includes the summation of all instructions
within the loop. Only the total basic block count for any
nested conditional block or loop is included in the total basic
block count for an enclosing conditional block.

FIGS. 5-7 explain this process in detail. The Compiler
recognizes that many COBOL instructions will result in
more than one basic block in the final generated machine
code. This is a glossary of the abbreviations and variables
used in the figures:
BB LIMIT. The number of basic blocks at which opti

mization is determined to take too much time or space.
This value is a constant determined by the architecture
of optimizer 216.

CURR, BB COUNT: Scalar value, Tracks the current
number of basic blocks in an area.

PREV BB COUNT: The basic block portion of a pair
popped from the NEST STACK.

BB CURR: Scalar value. Holds the basic block count of
the CURRENST.

OUTER INST: The instruction portion of a pair popped
from the NEST STACK.

CURR INST: The current instruction in the code stream
being processed. This is a record. Each record has a
BB COUNT field.

NEST STACK: Stack which holds pairs - a pointer to an
instruction and a basic block count. Used to support
nested loops and conditional blocks.

BB TABLE: A table containing a scalar basic block
value estimate for each instruction type.

FIG. 5 illustrates the basic block counting aspect of the
procedure slicing process. At step 510, the current number of
basic blocks in the code stream graph of the current proce
dure is initialized to zero. At step 512, the Compiler deter
mines whether the code stream has any remaining unproc
essed instructions. If there are no remaining instructions,
then the basic block count is saved (step 514) and the
Compiler begins loop counting.

Otherwise, the Compiler sets the current instruction to the
next instruction in the code stream (step 516). At step 518.
the Compiler looks up the current instruction in the
BB TABLE to determine the current instruction's block
value estimate. Then, this estimate is added to the block
count for the current procedure and assigned to the
BB COUNT field of the CURR INST record.

If the current instruction is the beginning of a loop or
conditional block (step 520), then CURR. BB COUNT

15

25

30

35

45

50

55

65

8
and a pointer to CURR INST are pushed onto NEST
STACK at step 522. Then, at step 524. CURR. BB
COUNT is reinitialized to zero and the Compiler returns to
step 512, where it will begin processing instructions inside
the loop or conditional block.

If the current instruction is the end of a loop or conditional
block (step 526), then NEST STACK is popped (step 528).
After the pop, OUTER INST is set equal to the popped
CURR INST pointer and PREV BB COUNT is set equal
to the popped CURR. BB COUNT value. At step 530, the
BB COUNT field of OUTER INST is set equal to
CURR. BB COUNT. CURR. BB COUNT is incre
mented by PREV BB COUNT. The process then returns
to step 512.

FIG. 6 illustrates the steps followed when procedure
slicing a loop. At step 610, the Compiler builds a list of all
loops at the outmost level of the procedure. This list is called
TOP LEVEL LOOPS. Next, at step 612, the process
identifies the member of TOP LEVEL LOOPS that has
the greatest basic block count. Then, CURR LOOP is set
equal to this member and BB COUNT is set equal to the
basic block count of CURR LOOP.

Next, BB COUNT is compared with BB LIMIT (step
614). If BB LIMIT is greater or equal, then SLICE
BEGIN is set equal to the beginning of the procedure and
SLICE END is set equal to the end of the procedure (step
616). Then, the in-line code slicing is also invoked (FIG. 7).

If BB COUNT is larger than BB LIMIT, then the
Compiler goes to step 618. In step 618, the Compiler
determines whether CURR LOOP contains a nested loop
(step 618). If not, then the Compiler continues to step 620.
Otherwise, the Compiler process builds a list, LOOP LIST.
of all outermost loops nested within CURR LOOP (step
622). Then, at step 624, the Compiler determines the mem
ber of LOOP LIST having the greatest basic block count
and sets CURR LOOP to this member. Next, BB COUNT
is set to the block count of CURR LOOP.
At step 626, BB COUNT is compared with BB LIMIT.

If BB LIMIT is larger, then the Compiler creates a new
procedure consisting of the loop, including the loop head
and tail code. (step 628). Then, the loop in the code stream
graph is replaced with a call to the new procedure. To
support non-local GO Tos (a GOTO with a target which
does not fall within the current coalesced procedure), it is
necessary to determine if the new procedure contains a
non-local GOTO. If it does, then a test in the code stream
graph is added immediately after the call which will test the
return value of the new procedure (step 632). If the return
value is non-0, then the code stream executes a return to its
caller. passing the return value of the new procedure. This
return value is called a "continuation". Next, at step 634, the
BB COUNT of each enclosing loop node in the code is
updated by subtracting the basic block count of the loop just
removed. In addition, the appropriate elements of TOP
LEVEL LOOPS are similarly updated. Finally, the Com
piler returns to step 612.

FIG. 7 illustrates the steps followed when slicing in-line
code. At step 710, the Compiler builds a list, BLOCK
LIST, of all in-line blocks of code. An in-line block of code
consists of a sequential set of instructions which does not
contain an if-block, else-block, or loop. The list is built from
the code flow graph and is defined by SLICE BEGIN and
SLICE END.

Next, the Compiler counts the number of basic blocks in
the current procedure (step 712). If this number is less than
BB LIMIT, then the Compiler is done. Otherwise, the
Compiler moves to step 714 and finds the element of

5,778.232

BLOCK LIST with the greatest basic block count.
CURR BLOCK.

If the basic block count of CURR BLOCK is greater
than BB LIMIT (step 716), then the Compiler creates a
new procedure consisting of the first instructions in CURR
BLOCK (step 718). In creating the new procedure, the
Compiler uses as many instructions as needed such that the
total basic block count of the new procedure is as close to but
not greater than BB. LIMIT. Then, the corresponding
instructions in the code stream graph are replaced with a call
to the new procedure. Next, at step 720, the basic block
count of CURR- BLOCK is updated.

If BBLIMIT is greater than the base block count of
CURR BLOCK, then the process creates a new procedure
consisting of all instructions in CURRBLOCK (step 722).
Then, all of the instructions in the code stream graph are
replaced with a call to the new procedure. Next, the Com
piler moves to step 720 which reduces the basic block count
of CURR BLOCK to reflect the effect of the instructions
sliced in step 718 or 722. After step 720, the process returns
to step 712.

Super-Proc

When processing a Procedure-Division, the compiler will
generate a "super-proc” which consists of sequential calls to
each procedure in the COBOL Procedure-Division. Execu
tion of a COBOL Procedure-Division will transfer control to
the super-proc, which will sequentially call each procedure.
This technique supports standard sequential control flow
through a COBOL Procedure-Division.
A control flow alteration resulting from an inter-procedure

GO TO statement results in a return to the super-proc with
an index identifying a paragraph to which control should be
transferred. This index is referred to as a "continuation.” An
intra-procedure GOTO (a jump to the head or body of the
current procedure) is implemented as an unconditional jump
within the current procedure. Since multiple paragraphs may
be coalesced into a single procedure, many GO Tos may be
implemented with direct jumps.
A control flow alteration resulting from a PERFORM

statement is either translated into a direct procedure call to
the entry point representing the PERFORMed paragraph or
into a call to the super-proc. A control flow alteration
resulting from a PERFORM statement can be translated into
a direct procedure call for target procedures that are well
behaved. A well behaved procedure is the transitive closure
of well behaved leaf procedures and procedures that only
call well behaved leaf procedures. A well behaved leaf
procedure is a procedure with no PERFORMs to non-well
behaved procedures and no inter-procedure GO Tos.
The super-proc takes two input arguments: 1) the index of

the "start paragraph,” the paragraph at which to begin
execution; and 2) the index of the "return paragraph," the
paragraph which returns to the caller upon exit. For a simple
PERFORM statement (a PERFORM with a single target)
these indices will indicate the same paragraph. For a PER
FORM <starte THROUGH <end> statement, the start para
graph index is the first operand and the exit paragraph index
is the second operand.
The super-proc is generated after all COBOL code has

been processed and paragraph coalescing and procedure
slicing have been completed. At this point, paragraphs no
longer exist; the set of all paragraphs has been converted into
a set of procedures. Therefore, the compiler knows which
procedures make use of GOTO and PERFORM statements
and the control flow characteristics of the targets of these

10

15

20

25

30

35

45

50

55

65

10
statements. Under this model, any procedure that has an
inter-procedure GO TO is declared to have a return value.
The return value is referred to as a "continuation." In the
super-proc, a call to such a procedure will be followed by
code to check the return value and invoke the enclosing case
table logic if it is non-zero. This code transfers control
appropriately. Paragraphs that do not make use of inter
procedural GOTO statements will not experience any of the
overhead associated with the use of "continuations.”
The super-proc can be thought of as a sequential set of

procedure calls within an enclosing switch statement. The
switch statement is used to support inter-procedure GOTos
between the various primary and alternate entry points
within each procedure.

Each primary and alternate entry point within a procedure
that is called from the super-proc will be the target of one or
more PERFORM statements or GOTO statements. This is
a result of the procedure coalescing algorithm of FIG. 3.
Each paragraph that has been coalesced into a procedure and
which is the target of a PERFORM or an inter-procedure GO
TO will have a unique entry in the switch statement.

In the super-proc, any primary or alternate entry point that
includes an inter-procedure GOTO will have code to test the
return value for a non-0 "continuation' immediately follow
ing the call to the primary or alternate entry point. If the
"continuation" is non-0, a branch to the beginning of the
super-proc is performed which invokes the enclosing switch
statement logic and dispatches control flow to the appropri
ate primary or alternate entry point.
Any primary or alternate entry point that is a potential

return point from a PERFORM will have code in the
super-proc to test the current "return paragraph" index
following the call to the primary or alternate entry point.
This code follows any code that may be present to test
"continuation" return values. If the "return paragraph" index
in the current invocation of the super-proc matches the index
of the primary or alternate entry point just executed, then the
super-proc returns to its caller which represents in a pop of
the conceptual PERFORM stock.
Any primary or alternate entry point that is not a potential

return point from a PERFORM will have code in the
super-proc to execute a jump to the point in the enclosing
switch statement that is the beginning of the next set of
coalesced paragraphs. This will be a jump to the beginning
of the next procedure. This jump follows any code that may
be present to test "continuation” return values. The jump is
necessary to avoid incorrectly re-executing code in set of
coalesced procedures that would occur by fall-through in the
enclosing case statement.

Below is an example of the Super-proc logical layout
using the C language for clarity. It is a simplistic example
that would not occur in this invention. It is provided to
illustrate the basic concept of control flow handling with the
Super-proc:

retre ()
first paragraph ();
second paragraph ();
third paragraph ();
fourth paragraph 0;
fifth paragraph ();
sixth paragraph ();

In the above code fragment, there are six paragraphs and
no GO TO statements used in the program. Therefore,

5,778.232
11

neither an enclosing case table nor continuations are used. In
fact, this program would result in a single in-line procedure
with no control flow due to procedure coalescing, provided
that the combined code size of the coalesced paragraphs
does not exceed the basic block limit.

Consider the following code fragment:

super-proc (next index, return index)

alter flow:
switch (next index) {

case 1: first paragraph ();
case 2: second paragraph ();
case 3: next index = third paragraph ();

if (next index) goto alter flow;
case 4: fourth paragraph ();

if return index = 4) return;
case 5: next index = fifth paragraph ();

if (next index) goto alter flow;
if (return index = 5) return;

case 6: sixth paragraph ();

In the above code fragment, note that paragraph 3 makes
use of one or more inter-procedural GO TO statements.
Paragraph 4 is a potential perform exit point because it is
the target of a simple PERFORM or the second operand in
a PERFORM THROUGH. Paragraph 5 makes use of one
or more inter-procedural GO Tos and is a potential perform
exit point.
When an intra-procedure GOTO is performed, an uncon

ditional branch is used. When an inter-procedure GO TO
statement is executed to alter control flow, the run-time code
performs a return to the super-proc with a "continuation" as
a return value which indicates the paragraph or section to
which control flow should be given. Any procedure that
makes use of an inter-procedure GOTO will include code to
return to the super-proc with a "continuation.” If such a
paragraph terminates normally, a zero "continuation” is
returned and the super-proc will invoke the next paragraph
in the control flow. If the paragraph terminates with an
inter-procedure GO TO, a "continuation" representing the
target of the GOTO is returned. The super-proc will then use
its alter flow case table to transfer control flow to the GO
TO target.
The code stream graph supports two types of PER

FORMs: 1) a "simple" PERFORM, a perform of a single
paragraph; and 2) a PERFORMTHROUGH, a perform of a
contiguous set of paragraphs. The more complex forms of
PERFORM, such as PERFORM . . . WARYING, are reduced
to either simple PERFORMs or PERFORM THROUGHs in
the code stream graph with the addition of extra instructions
to implement the logic for loops.
A PERFORM THROUGH is handled by a call to the

super-proc with the start and end indices as the first and
second arguments, respectively. A PERFORM THROUGH
statement targeting a set of paragraphs that has been coa
lesced into a well-behaved procedure will be a direct call to
the appropriate paragraph entry point.
Under the present invention, the PERFORM stack is

implemented with the standard system stack. A simple
PERFORM to a paragraph entry point in a well-behaved
procedure is implemented as a direct procedure call. Any
other simple PERFORM is implemented as a call tip the
super-proc with the same start and end paragraph indices.
Although the present invention and its advantages have

been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein

5

1O

15

25

30

35

45

55

65

12
without departing from the spirit and scope of the invention
as defined by the appended claims.
What is claimed is:
1. A compiler adapted for execution on a computer system

having a memory, the compiler comprising:
means executing on the computer system, for reading a

source program from the memory, the source program
comprised of a plurality of paragraphs, each paragraph
having a plurality of instructions, the instructions defin
ing a control flow;

means for coalescing the plurality of paragraphs to pro
duce coalesced procedures:

means for slicing instructions from the coalesced proce
dures to produce sliced procedures;

means for generating a super-proc from the sliced
procedures, wherein a call to the super-proc imple
ments the control flow.

2. The compiler of claim 1, wherein the means for
coalescing comprises:

means for determining whether a paragraph is a potential
return point;

means for coalescing the paragraph into a first current
procedure if the paragraph is not a potential return
point;

means for creating a second current procedure containing
the paragraph if the paragraph is a potential return
point.

3. The compiler of claim 2, wherein the means for
coalescing the paragraph into the first current procedure
comprises:

means for reclassifying a primary entry point of the first
current procedure as an alternate entry point;

means for altering the first current procedure to indicate
that the first current procedure contains the paragraph;

means for marking the paragraph as the primary entry
point of the first current procedure.

4. The compiler of claim 1, wherein the means for slicing
comprises:

means for estimating a number of basic blocks in a
coalesced procedure;

means for removing instructions from the coalesced pro
cedure and placing the removed instructions in a new
procedure if the estimated basic block count is above a
predetermined limit;

means for replacing the removed instructions in the
coalesced procedure with a call to the new procedure.

5. The compiler of claim 4, wherein the means for
estimating comprises:

a table containing a basic block value estimate for each
instruction;

means for looking up an instruction in the table to
determine the instruction's basic block value estimate.

6. The compiler of claim 1, wherein the super-proc
comprises sequential calls to each entry point in each sliced
procedure.

7. The compiler of claim 1, wherein the super-proc
accepts a first argument indicating a start paragraph and a
second argument indicating a return paragraph.

8. The compiler of claim 1, wherein the super-proc
comprises:

means for implementing an intra-paragraph GOTO state
ment as an unconditional jump;

means for implementing an inter-procedure GOTO state
ment as a return to the super-proc with a continuation
indicating a paragraph to which control should be
transferred;

5,778,232
13

means for implementing a first PERFORM statement as a
direct call to a well-behaved procedure;

means for implementing a second PERFORM statement
as a call to the super-proc.

9. A method of compiling a source program stored in a
memory of a computer system, the source program com
prised of a plurality of paragraphs, each paragraph having a
plurality of instructions, the instructions defining a control
flow, the method comprising the steps of:

coalescing the plurality of paragraphs to produce coa
lesced procedures;

slicing instructions from the coalesced procedures to
produce sliced procedures;

generating a super-proc from the sliced procedures,
wherein a call to the super-proc implements the control
flow.

10. The method of claim 9, wherein the coalescing step
comprises the steps of:

determining whether a paragraph is a potential return
point;

coalescing the paragraph into a first current procedure if
the paragraph is not a potential return point;

creating a second current procedure containing the para
graph if the paragraph is a potential return point.

11. The method of claim 10, wherein the step of coalesc
ing the paragraph into the first current procedure comprises
the steps of:

reclassifying a primary entry point of the first current
procedure as an alternate entry point;

altering the first current procedure to indicate that the first
current procedure contains the paragraph;

marking the paragraph as the primary entry point of the
first current procedure.

12. The method of claim 9, wherein the slicing step
comprises the steps of:

estimating a number of basic blocks in a coalesced
procedure;

removing instructions from the coalesced procedure and
placing the removed instructions in a new procedure if
the estimate is above a predetermined limit;

replacing the removed instructions in the coalesced pro
cedure with a call to the new procedure.

13. The method of claim 12, wherein the estimating step
comprises the step of:

looking up an instruction in a table to determine the
instruction's basic block value estimate.

14. The method of claim 9, wherein the super-proc
comprises sequential calls to each entry point in each sliced
procedure.

15. The method of claim 9, wherein the super-proc
accepts a first argument indicating a start paragraph and a
second argument indicating a return paragraph.

16. The method of claim 9, wherein the generating step
comprises the steps of:

implementing an intra-paragraph GO TO statement as an
unconditional jump;

O

5

25

30

35

45

50

55

14
implementing an inter-procedure GO TO statement as a

return to the super-proc with a continuation indicating
a paragraph to which control should be transferred;

implementing a first PERFORM statement as a direct
jump to a well-behaved procedure;

implementing a second PERFORM statement as a call to
the super-proc.

17. A computer program product having a computer
readable medium having computer program logic recorded
thereon for optimizing a source program on a computer
system having a memory, the computer program product
comprising:
means executing on the computer system for reading the

source program from the memory, the source program
comprised of a plurality of paragraphs. each paragraph
having a plurality of instructions, the instructions defin
ing a control flow;

means for coalescing the plurality of paragraphs to pro
duce coalesced procedures;

means for slicing instructions from the coalesced proce
dures to produce sliced procedures;

means for generating a super-proc from the sliced
procedures, wherein a call to the super-proc imple
ments the control flow.

18. The computer program product of claim 17, wherein
the means for coalescing comprises:

means for determining whether a paragraph is a potential
return point;

means for coalescing the paragraph into a first current
procedure if the paragraph is not a potential return
point;

means for creating a second current procedure containing
the paragraph if the paragraph is a potential return
point.

19. The computer program product of claim 18, wherein
the means for coalescing the paragraph into the first current
procedure comprises:

means for reclassifying a primary entry point of the first
current procedure as an alternate entry point;

means for altering the first current procedure to indicate
that the first current procedure contains the paragraph:

means for marking the paragraph as the primary entry
point of the first current procedure.

20. The computer program product of claim 17, wherein
the means for slicing comprises:

means for estimating a number of basic blocks in a
coalesced procedure;

means for removing instructions from the coalesced pro
cedure and placing the removed instructions in a new
procedure if the estimate is above a predetermined
limit;

means for replacing the removed instructions in the
coalesced procedure with a call to the new procedure.

ce xk : x: x:

