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1 Introduction

These notes are intended to provide an introduction to generalized linear modelling, em-
phasising the way relationship between the modern theory and the older theory of trans-
formations, out of which the idea developed.

We consider transformations in statistics, however, to be of much more than historical
interest. The brief treatment we give here is intended to be as much for their use in
contemporary data analysis as for showing the origins of the idea of a generalized linear
model.

2 Transformations

2.1 Approximate means and variances

Let Y be a random variable with first two moments
E[Y]l=pu and var[Y] :E[(Y—u)g] = o2

Now let U = g(Y) be another random variable defined as a function of Y and we need an ap-
proximate expression for its first two moments as well. If we can assume that g(.) is smooth
and only slowly varying, at least in the region where its argument, Y, is stochastically lo-
cated, the simplest approach to this problem is to assume that a linear approximation to
2(.) near the mean of Y is adequate. Expanding g(.) in a Taylor series gives

U=g¥)=g(u+g (u)Y — ) +“smaller order terms”

Neglecting the smaller order terms gives the approximate expressions

U

E[U]
var[U]

gW+g WE[Y -w] =g (1)
B|(U-gw)’| ~ g WPE[(Y - w?] = g'(?0* (2)

U

Approximate formulae 1 and 2, and extensions to them, are often referred to in statistics as
“the delta method”. They are useful in their own right, but they also give some elementary
guidance about the possible choices of transformation to achieve various aims.

2.2 Variance stabilising transformations

If the variance of Y is not constant but changes with the mean, that is var[Y] = o2(u),
this can often cause difficulties with both interpretation and analysis. In these cases one
possible way around the difficulties might be to transform the response, Y, to a new scale
in which the variance is at least approximately constant.

Suppose, then, that we transform the response to U = g(Y). The delta method suggests
that if we want the variance of U to be approximately constant, then we should choose g(.)
such that

var[g(Y)] = g'(w?o?(u) = k*
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where k is a constant. In other words, we should choose g(.) to be any solution of
dg k
!/
t)=—=——
& dt o(t)
up to changes in location and scale. A convenient solution, then, is
Y dt
g(y)—f %
Example 2.1 If Y has a Poisson distribution, Y ~ Po(u), then
E[Y]=var[Y]= =02y

To transform the distribution to approximately constant variance, then, the suggested

transform is Y dt Y dt
— _— = = 2
=[5 Vi 2

Taking the square root was a standard technique in the analysis of count data and towards
the middle of the last century much work was done to refine it.

Example 2.2 Suppose S is a Binomial random variable, S ~ B(n,®), and put Y = S/n,
the 'proportion of successes’. Then

ElY]=0=p, var[Y]= 02(u) = @

Hence, up to location and scale, the suggested transformation that will approximately
stabilise the variance is

<>fydt ffy 0 in""/y

=] —=vn| ——=+vnsin

g a(t) V(1 -1t) Y

Transforming with an ‘arc-sine square-root’ was a standard technique in the analysis of

proportion data and, as in the Poisson case, much work was done to refine it prior to the
general adoption of generalised linear modelling alternatives.

Example 2.3 A distribution for which the ratio cv = o/u = k is constant with respect
to the mean is said to have “constant coefficient of variation”. Since o?(u) = k2u?, the
suggested transformation to stabilise the variance is

ydt 1 [Ydt 1
= ——==| —==lo
g() f e kf - =3 108(®)
Hence for such distributions the log transformation is suggested to make the variance at
least approximately constant with respect to the mean.

As an exercise, show that both the gamma and lognormal distributions have constant

coefficient of variation, and examine to what extent the log transformation stabilises the

variance with respect to the mean.

The gamma distribution has probability density function

e—y/a y(p—l
a?T(p) °

The lognormal distribution is defined by transformation. We say Y has a lognormal dis-

tribution if logy ~ N(u,0?).

O<y<oo

fr(y;a,¢) =




2.3 The Box-Cox family of transformations

Transforming a response to stabilise the variance will, of course, also affect the relationship
between the mean and the candidate predictors. In a pioneering paper [Box & Cox(1964)]
Box and Cox suggested a method for choosing a transformation that allowed the effect on
both the mean and the variance to be taken into account. They considered a family of
transformations defined by

y' -1
A#0 dg(y; A
gy;M=4 A with —gc(iy ) _ y1
y

logy A=0
Note that this includes both the square-root and log transformations, along with other

power transformations which are often used in practice, (including the trivial identity
transformation).

Now suppose we have a sample of responses and that after transformation it conforms to
a linear model specification as follows (with an obvious notation):

gy; 1) ~N(XB,0°1,)

The likelihood function for the sample is the distribution of y, namely

lg(y; 1) - XBI12 -
+1 !

log £(B,0%,A;y) = —g log(2m) — glog(ag) -

where the final term on the right is the Jacobian factor for the inverse transformation.
(This is only an approximate result in general as for most transformations in the family
the range is not —oo < y < oo, but we ignore this here.)

Maximising this with respect to B and o2 gives the profile likelihood for A, which by

standard results is easily shown to be
x n n T n oroA-1
log £*(A;y) = max log. £ = —~ log(2n/n) - ~ log {g(y; H (1~ P)gy; H} - = +log [ ] y;
B,02(A 2 2 2 Lt

i=1

where Px = X(X"X)"X" is the orthogonal projector matrix on to the range of X, and the
quantity in braces, {...}, is the residual sum of squares after regressing the transformed
response on X.

As pointed out by Box and Cox, the Jacobian factor can be combined with RSS term in a
neat way. Note that

n
_ n .9(A—
log [Ty} ™" = 5 logy™*™V
i=1

where y = (H?zl yi)l/n is the geometric mean of the observations. Now define a slightly
modified response as

2(0) = gy; 1) [ 97
Then the profile likelihood for A may be written

log £*(A:y) = const. — glog {z(/l)T(I - Px)zm)}
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where “const.” does not depend on A. Hence the profile likelihood may be computed from
the residual sum of squares after regressing the constructed response, z(1) on X.

The strategy suggested by Box and Cox was to use the profile likelihood not to estimate
A, but to serve as a guide in the choice of the transformation, using as much contextual
information as possible. They suggest fitting a model with the desired mean structure and
constant variance initially to the untransformed response variable, and consider the profile
likelihood for a series of values of A. If it is possible for a member of the transformation
family to achieve the desired mean structure and constant variance, it will come from the
set with high profile likelihood, but the onus is still on the modeller to show that the result
has been satisfactorily achieved, using, for example, diagnostic checks.

The standard plot of the profile likelihood, with the formal MLE and likelihood-ratio 95%
confidence interval shown can be useful for this purpose. Such a plot is available using the
boxcox from the MASS package.

Example 2.4 The Cars93 data set from the MASS library contains information on the
models of cars released in the USA in 1993. Two of the variables given are MPG.city, the
fuel efficiency in city driving, and Weight. Suppose we wish to choose a scale for the fuel
efficiency variable so that it can be predicted by a linear regression on the weight of the
vehicle.

> library(MASS)

> par (mfrow = c(2, 2), cex = 0.7)

> with(Cars93, plot(Weight, MPG.city, col = "green4"))

> FEM.orig <- 1lm(MPG.city ~ Weight, Cars93)

> plot(fitted(FEM.orig), resid(FEM.orig), col = "navy")

> abline(h = 0, 1ty = "dashed", col = "red")

> boxcox(FEM.orig, lambda = seq(-1.75, -0.5, len = 10))

Figure 1.

The reciprocal transformation, A = —1 stands out as both natural in the context, since

fuel economy may equally be measured as ‘gallons per mile’ as by ‘miles per gallon’, and
acceptable from the point of view of the profile likelihood. For scale reasons we choose a
minor variation on this, namely 1000/MPG.ciy, or ‘gallons per 1000 miles’.

> with(Cars93, plot(Weight, 1000/MPG.city, col = "red"))

The results are shown in the final panel of Figure 1. The regression line is visibly straight
and the spread about the line much more homogeneous.

Example 2.5 An alternative family of transformations that can be studied in the same
way as the Box-Cox family is the “displaced log” family, defined as

h(y;a)=log(y + a)

As an exercise, derive the profile likelihood for a given that the transformed response has
a linear model of the same form as that described for the Box-Cox family.

The MASS library function logtrans may be used in a similar way to the boxcox function.
An example from the Quine follows, with the output shown in Figure 2.
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Data and diagnostic plots for the fuel efficiency model.




> library(MASS)
> logtrans(Days ~ Eth * Lrn * Age * Sex, data = quine)
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Figure 2: Profile likelihood for the a parameter in a displaced log transform with the Quine
data.



3 Introduction to generalized linear models

The idea of a generalized linear model (GLM) developed from the practice in statistics of
transforming the response variable to provide a convenient scale for analysis. Transforming
the scale of the response was a simple device, but it had two main drawbacks, namely

e Transforming the response variable could be used to simplify the mean structure or
to stabilise the variance, but often not both.

e If an analysis were done in a transformed scale, it was often difficult to make predic-
tions, for example, in the original scale, which was often necessary.

The Box-Cox proposals were aimed at achieving a reasonable compromise between variance
stability and simplicity of mean structure with a single transformation, but it would clearly
be preferable to have separate mechanisms for simplifying mean structure and stabilising
variance.

GLMs get around these problems by setting up a model in the original scale, using a link
function to transform the mean into a linear function of the predictor variables and a
variance function to allow for variance heterogeneiry in the analysis rather than trying to
transform it away. Thus rather than seek a single compromise transformation, GLMs do
offer two independent devices, while at the same time the analysis is in the original scale.

One very convenient feature of the linear model is that the predictors enter the model
through a single linear function, only. More specifically, suppose Y is a response variable
and let x1,%2,...,%, be candidate predictors. Let

n=x1P1+x2B2+ - +x,0, =2 B

be a linear function of the predictors. If the predictors enter the model through n alone,
then it is true that the predictor x; does not influence the distribution of Y if and only if

p;j=0.

The normal linear model is usually written as
Y=x'p+0Z=n+0Z  where Z~N(0,1)
This is clearly the same as describing the model as
Y ~N(17 :xTﬁ,a2)

Generalized linear models retain the convenient feature that the model depends on the
predictors through a single linear function, namely 7, only, but relaxes the assumption
that the distribution is normal. The assumption is that the distribution of T' can be
specified as

Y ~fryn=x"B,p)

where fy denotes a generic probability (density) function, belonging to a particular family
to be described below in section 4.

The linear function of the predictor variables, n, is called the linear predictor.

The precise assumption made is actually a little stronger than this. A generalized linear
model for a response variable Y requires that



e The mean of Y depends on the predictor variables through a single linear predictor
E[Y]=u=¢"11) or, alternatively, (W=n=x"p

The function, #(.) is called the link function, and plays a similar role to the transfor-
mation function.

e The distribution of ¥ may also involve a constant scale parameter, ¢.

e The distribution of Y belongs to a particular family, to be described below. This will
imply that the variance of the distribution has the form

var[Y]= %v(u)

Here A is a known prior weight and v(u) is called the variance function, which may
depend on the mean, u, and hence on the linear predictor.

Example 3.1 The following example shows that log-transforming the response and using
a GLM with log-link and constant variance can produce dramatically different results. The
example is taken from [Ruppert et al.(1989)Ruppert, Cressie & Carroll].

The data gives the weekly percent fat in the milk of a single cow for a period of 35 weeks.
The model suggested is of the form

logY = Bo+ Brw + Pelogw + 0 Z (log-transform)

or
Y =exp(Bo+ Prw + Pologw) + cZ (log-link GLM)

where w is the counter for the week. The latter version is often used in animal science.

> Milk <- data.frame(week = 1:35, yield = c¢(0.31, 0.39, 0.5, 0.58,
0.59, 0.64, 0.68, 0.66, 0.67, 0.7, 0.72, 0.68, 0.65, 0.64,
0.57, 0.48, 0.46, 0.45, 0.31, 0.33, 0.36, 0.3, 0.26, 0.34,
0.29, 0.31, 0.29, 0.2, 0.15, 0.18, 0.11, 0.07, 0.06, 0.01,
0.01))
M1 <- Im(log(yield) ~ week + log(week), Milk)
M2 <- glm(yield ~ week + log(week), quasi(link = "log"), Milk)
pMilk <- data.frame(week = seq(1, 35, by = 0.1))
pMilk <- transform(pMilk, pM1 = exp(predict(M1, pMilk)), pM2 = predict (M2,
pMilk, type = "resp"))
y1l <- range(Milk$yield, pMilk$pM1, pMilk$pM2)
> with(Milk, plot(week, yield, pch = 8, cex = 0.8, xlab = "Week",
ylab = "Fat yield (kg/day)", ylim = yl, col = "navy"))
> with(pMilk, {
lines(week, pM1, col
lines(week, pM2, col
»)
> legend("topright", c("observed", "lm, log-transformed", "glm, log-link"),
1ty = c(NA, "solid", "solid"), pch = c(8, NA, NA), col = c("navy",
"red", "green4"), cex = 0.8, bty = "n")

vV VvV Vv Vv

\

”red u)
"green4")
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The result is shown in the left panel of Figure 3. Thr right panel shows the same plot, but
with the response on the log scale. As this is the scale in which the log-transformed model
has been estimated, it becomes clear why the result appears as it does on the natural scale.
The low values on the log scale become very influential points, and on this scale it is the
lowest two values which are responsible for the largest residuals.

© *  observed
5 — — o
o Im, log-transformed 3
— glm, log-link =]
® © = o
S °] € S
2 =)
=3 3 i
- < o
o o (]
> = 8
k] 5 oS
L [
s — % observed
—— Im, log-transformed
S - *x 2 _|— gim, log-link "
© o
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Week Week

Figure 3: Comparison of log-transform and log-link linear models for the milk fat content
data. The left panel shows the repsonse in the natural scale and the right shows it in the
log scale.

4 The GLM family of distributions

We assume that the distribution to which Y belongs has a probability (density) function
that can be written in the form

A
fr(y;n, @) =exp - {y0—b0)} +c(y,p)
where

e A is a known, positive prior weight, not necessarily the same for all observations,

e ¢ is a constant, positive scale parameter, (also called a dispersion parameter), possi-
bly, but not necessarily known, and

e 0 =0(u) depends on the mean, and hence on the linear predictor.

Example 4.1 If Y ~N(n,0?), its density function may be written

1 n? ¥y 1 2
ﬁ{yn—5}+ﬁ—élog(2ﬂa )

2
;1,0°) = ex
fy(y;n,o%) 5 P g2
Hence, in this case,

2

1

A=1, ¢=02, 0m=n, bO)=6%2, and c(y,p)= ;_2 - 51og(27mz)
(0}
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The normal distribution with constant variance is therefore included in the GLM family.

Example 4.2 If Y has a Poisson distribution, that is, ¥ ~ Po(1), where A1 = A(n) is some
known function of a linear predictor. Then its probability function may be written

e )Y

fy(y; )= =exp{ylogA—A—logy!}

y!

Hence A =1, ¢ =1, is a known value in this case, 6 = logA(n), b(0) = A = exp(f) and
c(y,p)=—logy!. The Poisson distribution belongs to the GLM family.

4.1 Moment generating function and cumulants

The moment generating function for a distribution in the GLM family is

A
My(t)=E[etY] :fetyfy(y;n,tp)dy=fetyeXp a{ye—b(e)}ﬂ(y,(ﬁ)] dy
y y

where the integration has to be interpreted as over the sample space of Y, (which therefore
may be with respect to counting measure if Y is discrete). The integral may be written as

A tp A Ly
5{b(9+x)—b(6)} xfyexp 5{y(0+x)—b

The final integral in this expression is equal to 1, at least for sufficiently small values of
t, as it is the integral of a normalised probability density function over the entire sample

space. Hence
A tp
—<b|O+—|-bO
w{ ( Ta ()H

The cumulant generating function, Ky (¢) =log My(t) is then

_A AN B
Ky(t)—(p{b(0+A) b(e)}_j;KJj!

9+t—(p)}+c(y,(p)

My (t) =exp "

dy

My (t) =exp

It follows easily that

d -1
k1=p=0b'0), kg=0°= %b”(@) = %d_g’ and in general «, = (%)r b"(0)

Notice that this establishes the form of the variance function claimed above:

d
var[Y]= %v(,u) where the variance function v(u)=>b"(0)= d—g

Also, since A >0, ¢ >0 and var[Y]> 0 by definition, it follows that % > 0. Thus g must
be a monotone increasing, and hence invertable, function of 8. It follows, then, that

do 1
_— = >
du  v(w

We use this result in the next section.

11



4.2 The natural link function

For any member of the generalized linear model family one particular link is called the
natural link because it has properties that make the statistical theory slightly simpler.

Notice that selecting a member of the family implies choosing a particular form for the
function 8 = 0(u), and choosing a particular link implies choosing a function, ¢(.), for which
C(wy=n, or p=0"1).

Definition: For any given member of the generalized linear model family the natural link,
¢4 is that link for which

0 (3 m)=n
identically in 7.

Example 4.3 For the N(u,0?) we saw that 6(u) = g, which implies that the natural link
for this family has u=m, that is £ is the identity function. This simple case is called the
wdentity link.

For the Poisson distributon we say that 0(u) =logu, so the natural link is the one for which
¢71(n) = expn, that is £4(.) =log(.), the log link.

The natural link gives the GLM two important statistical properties, which we state here
without proof.

e For the natural link, if the dispersion parameter, ¢ is known, the statistic X'y is suf-
ficient for B, that is, it determines the likelihood function up to a factor independent
of the parameters.

e For the natural link the maximum likelihood estimates satisfy the relationship
X'y=X"jt

This relationship is often described by saying that “the observations and the fitted
means have the same marginal totals”.

In R generalized linear modelling family functions have the natural link as the default,

though there is often no particular data analysis reason to prefer it in practice.

5 Estimation

5.1 Some general theory

We begin by stating some definitions and general results we will assume in the later discus-
sion. Proofs may be found in any good intermediate level book on frequentist statistical
inference.

Assume L(y) =log Z(y) is a log-likelihood for parameter vector yP*!.

12



Definition: The score vector, s(y), for y is the vector of first partial derivatives, or gradient
vector, of L(y).

Definition: The information matriz, #(y) is the negative of the matrix of second partial
derivatives, or negative Hessian, of L(y).

Definition: The expected information matriz, I(y) is the expectation of .#(y) over the
sample space of the observations.

0L/dy, -0°Lioy] -+ —0°L/0y10y,
s(y) = : F(y)= ‘ :

- : I(y)=E[5()]
OL/dy, —0°L/dyp0y1 ---  —0°L/dy?

It can be shown under mild regularity conditons that
E[s(p))=0 and  var[s(y)| =I(y)
Further, if 9 is the MLE, it can usually be shown that, for “large” samples,
s(y) ~N(0,1(y)) and  P~N(y,I(y)™})
Much of statistical inference in practice is based on either the latter result and the large

sample distribution of the likelihood ratio statistic.

The MLE, in regular cases, occurs at a stationary maximum point of the log-likelihood and
most methods for finding it focus on solving the score equation, namely

s(j)=0

The standard Newton-Raphson method for solving the score equation starts with an inital
vector, Y9 and successive approximations are calculated according to the scheme

Y(m+1) — Y(m) +f(}’(m))_1s()/(m))

The Fisher modification of this process is to replace the observed information matrix with
the expected
Y(m+1) — Y(m) + I(‘)/(m))_ls(’}’(m))

which can simplify the computations without affecting the convergence of the process very
much.

There is no guarantee that the process will converge, however, and when it does, there is
no guarantee that the point is at the global maximum of the log-likelihood function, but
in practice in statistics it is usually the case that convergence is to the MLE and occurs
rapidly.

5.2 Estimation of the linear parameters
We temporarily assume that ¢ is known and consider estimating the parameters, f, by
maximum likelihood. It is useful to start the discussion with a few formulae for partial

derivatives of the log-likelihood.

13



Write the log-likelihood in the form

n n

A.
L=log¥=) Li=)_ j{yigi — b0} +c(yi, )
i=1 i=1

Using the chain rule
aLi aLi 60i al.ti 61’]i
0p; 00; dp; 0n; 0B;
A a@i d,ui
= —(i-0'0)) - ———
<p( L ’)0ui on;
\2 .
SRENLTI SEETRE
v(w \on; ) owi/on; ¢
= x;;xw; xe; x1/p as a definition.

This will give the score vector for the linear parameters, g.

Note that the parameter ¢ occurs only in the final factor. This immediately shows that if
we solve the score equations for B the solution will not depend on ¢, and so we may find
separately first, whether ¢ is known or not. This will be confirmed later when the ¢ drops
out of the MLE algorithm.

To find the expected information matrix, note that, after a little algebra,

OL;
E [ ] =0 in line with the general result

0p;
oL, OL; oL; aLi] 1
COVI——=—H 2 | = = XX Wi —
0B; 0B 0pB; 0B )

The expected information matrix 1(#), will be obtained by adding these results over all
observations.

It is convenient to define quantities in matrix notation. Let X = (x;;) be the model matrix
and put W = diag(w;) as a diagonal matrix of iterative, or "working’ weights and e =
(e1,...,e,)". Then the score vector and information matrix may be written as

AL/3p1 .

s(f) = : = ZX"We
dL/op, 4

I(B) =var[s(B)] = éXTWX

Given an initial starting vector, p@, the Fisher modifiet Newton-Raphson process for
solvind the score equation defines a series of approximations to the MLE as

ﬁ(m+1) — ﬂ(m)"‘I(_,;)S(ﬁ(m))

-1
™ + (X TWomX ) X "Winyem)

Notice that the scale parameter, ¢, cancels and is not involved at this stage. This equation
may also be written as

XTW(m)Xﬁ(m+1) = XTW(m)y(*m) where y(*m) = Xﬂ(m) +€em)

14



Hence the process may be written as iterative weighted regression with iterative weight
matrix, W,y and working response vector y(*m) = Xp"™ + e(n). The components of the
vector e, are called the working residuals.

This shows again that even if ¢ is not known, it is possible to maximise the likelihood
with respect to B separately, without it. We could estimate ¢ by maximising the profile
likelihood for it, now that we know the MLE for B, but in practice this is not usually done.
Instead ¢ is usually estimated by a more informal process, motivated by analogy with the
usual estimator for the Normal distribution. We outline this in the next section.

At this stage, though, note that

0%L; ] ~
0p;0¢

This shows that the expected information is block diagonal and hence that p and ¢ are
uncorrelated, and hence independent, at least asymptotically.

A (aﬂi)zx yi—pi -1

Xjj X — x —| =
Vv \on; ) T dpilon; @2

6 The deviance and estimation of ¢

To define the quantity known as the deviance of the linear model, we first need to define
a model we call the saturated model.

Definition: The saturated model, denoted by S, is a model with n parameters, that is as
many parameters as there are observations.

The saturated model is of no interest in data analysis, but note that

e Any genuine model, i.e. one with p < n regression parameters, is a special case of the
saturated model.

e For the saturated model, a convenient choice for the parameters are the means, y;, of
the observations themselves. Equating the score vector for y; to zero gives the MLE

i =yi for the saturated model, S

e With n mean parameters, there is no information available to estimate the scale
parameter, ¢, as well, under S.

Assume, temporarily, that the scale parameter, ¢, is known and that its value is ¢ = 1.
This assumption is correct for the Binomial and Poisson distributions, but usually not for
the Normal, Gamma and Inverse Gaussian distributions.

Now suppose that M is any real model with model matrix X™*? of rank p <n. As noted
above, M is a special case of S, M c S, so we can formally consider a likelthood ratio test
statistic for testing M within S:

Dy =% 2 msaxlogff - mﬁxlogf

Definition: The quantity D is defined as the deviance for model M.
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Likelihood ratio theory would suggest that under the Null hypothesis model, M, the de-
viance, Dy, should have an (approximate) chi-squared distribution with n—p degrees of
freedom:

Dy~y%(n-p), if Mistrue and ¢ =1

This is not strictly supported by Likelihood Ratio theory, as the saturated model does
not have a fixed number of parameters. Nevertheless there are situations where it is
approximately true, if the initial assumption, ¢ =1, is correct. Hence

EDyl=n—-p if M is true and ¢ =1

In the case of a Normal model with constant variance, (i.e. the ordinary linear model), it
is easy to show that the deviance is just the residual sum of squares:

Dy=y' (I-Px)y=RSS the residual sum of squares, for ordinary linear models

This estimator, the so-called ‘reduced’ or ‘restricted” maximum likelihood estimate, or
REML estimate for short, can be justified in several ways. For example, it is the MLE got
from the marginal likelihood for o2, which is based on the distribution of RSS itself rather
than on the full likelihood.

In this case the scale parameter is the variance, ¢ = o
parameter is

2 so the usual estimate of the scale

S

Also, if My is a sub-model of M with pg < p degrees of freedom, the usual test statistic for
testing Mo within M is

_ (Dmy—Dm)(p-po)

B Dy/(n—p)

which, if My is true, has an Fp_p, n—p distribution.

F

In this case it can be shown to be equivalent to the likelihood ratio test, but in the general
case it is not true that the analogous test is a likelihood ratio test.

Now consider the case of the Binomial or Poisson distribution, where the assumption ¢ =1
is correct. In this case if My is a sub-model of M, then the likelihood ratio statistic for
testing Mo within M is

X?=Dy,-Dy
which, if My is true, will have an approximately y2(p — po) distribution.

In this case the deviance itself is not needed to estimate a scale parameter, but it is
sometimes the case that the deviance can be used as a test of fit for the model itself.
This result has to be treated with some caution, however. In particular it is usually not a
reliable test of fit for cases where the data are binary.

6.1 Overdispersion

Very roughly, though, if you were to estimate the scale (or dispersion) parameter, as if it
were unknown, a natural estimator would be

Dy
n—p

()b:
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If this estimator is much larger than 1, it is an indication that the model is somewhat
doubtful, at least.

Definition: A data set is said to be overdispersed with respect to a particular model, if

e The model has known dispersion parameter, ¢ =1,

e For this data set Dy >>n—p.

Example 6.1 The Quine data in the MASS library give the number of days absent from
school in an acedemic year by the students at a particular rural Australian school. The
children are further classifies by age group, Age, ses, Sex, learner status, Lrn, and ethnicity,
Eth. A natural model to consider for this is that the day counts have a Poisson distribution
with a mean depending on the subclass to which the child belongs. A quick check, however,
shows this to be unrealistic.

> quine.1 <- glm(Days ~ Age * Eth * Sex * Lrn, poisson, quine)
> with(quine.1, c(D_M = deviance, "n-p" = df.residual))

D_M n-p
1173.899 118.000

The deviance is nearly 10 times the residual degrees of freedom. The modelling strategy is
clearly not appropriate. It is nevertheles the case that the estimates of the mean parameters
are largely unaffected. If standard tests are used, however, ignoring the overdispersion, the
resuls will be very misleading. We need to modify the model to take account of the non-
Poisson behaviour.

6.2 Uses for the deviance

We now give a short summary on how the deviance is used in generalized linear modelling.
There are two separate cases.

Case 1: ¢ =1, known In this case differences of deviance are used as chi-squared tests
for sub-models.
X2 =Dy, Dy~ )(2(p —po) if My is true
The statistic is a true likelihood ratio statistics, and asymptotic likelihood ratio theory
generally applies.

The deviance itself, Dz, can sometimes, with caution, be used as an absolute test of
fit. Cases where Dys/(n—p)>> 1 are usually called overdispersed with respect to the
model.

The common distributions in this group are the Binomial and Poisson; others include
the truncated Binomial, truncated Poisson and Negative Binomial with known shape
parameter.

In the rare, but possible, case where ¢ is known but its value is not 1, the deviance
may be re-defined as D,,/¢ for the above remarks to apply.
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Case 2: ¢ is unknown In this case the deviance has to be used, (essentially) to esti-
mate ¢. There is no overall test of fit based on the deviance, and no concept of
“overdispersion”.

For the normal distributon the estimate of ¢ is
2 _ Dum
n—-p

p=s

but for other distributions in the group, such as gamma and inverse gaussian, a
modified estimator is used, which uses the Pearson residuals, as explained below. We
also denote this modified estimator by @.

Tests for sub-models use an F—statistic of the form
e Dy, —Du)(p —po)
7

~Fp_pon—p if My is true

The main distributions in this group are the normal, gamma and inverse gaussian.

6.3 Residuals

There are four definitions of residuals for generalized linear models routinely available with
the GLM model fitting functions in R. These are

Deviance residuals If we think of the deviance as defined as a sum of contributions, one
from each observations, each of these contributions has to be positive.

n .
Dy=Y DY)
i=1

The deviance residuals are then defined as

P = \/Dg‘i/[) x sign(y; — f1;)

Hence the deviance residuals have the properthy that they have the same sign as the
differences, y; — f1;, and their squares sum to the deviance itself.

This is the default definition for residual for GLMs in R and is probably the most
useful, simple defintion of residuals to use for most diagnostic purposes. They should
in general by regarded as if they were normally distributed. However in some cases
they will always look far from normal, for example, with strongly discrete data,
particularly binary data.

Pearson residuals These are defined as
rP _ ¥i — [
VU(i)/A;

For distributions where ¢ is unknown, the usual estimate of it is

2
?:1(”?)

n—p

=
This reduces to the “standard” estimate, Dys/(n — p) in the normal case.
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Working residuals These come from the iterative algorithm itself at the final stage. They
are defined as

w_ Yi— i
l

r =é;
Opi/on;

Response residuals Simplest of all. These are defined as the differences

R N
ry=Yi—Hi

All four definitions reduce to the same quantity in the case of the normal distribution, but
in all other cases some differences exist.
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