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Introduction

We have observed that over 90% of our students, both undergraduate 
and graduate, know little about the existence and multiplicity of real 

roots of real numbers; for example the fifth root of –2. Most of those who may 
know the answers are unable to give a logical explanation of the validity of 
their answers.

Here we give an elementary but rigorous treatment of this topic, which not 
only makes the students aware of some important properties of real numbers 
but can also provide a nice example of a rigorous treatment of a mathematical 
reasoning at an elementary level that even a competent high school student 
can understand. It is clear that we need to start emphasizing mathematical 
arguments and proofs in our classes and discourage total dependence on 
technology. We need to reconsider a better balance between what to teach 
and how to teach.

To establish the existence of roots, we need the intermediate value theorem, 
which is fairly intuitive if one understands the definition of continuity (for the 
sake of completeness, we state it below). We do not need any more advanced 
topics or differentiability. We also give an alternate proof of the main existence 
theorem in the Appendix, using some basic properties of real numbers such as 
the completeness property of real numbers, trichotomy of inequality of real numbers, 
and Archimedean property. This method is an extension and modification of 
the method used in [1], in order to prove existence of the square root of 2. 
However, they do not address the number of square roots or roots of numbers 
in general.

Intermediate value theorem
Let f(x) be a function defined and continuous on the interval [a, b] and let c 
be a number such that f(a) < c < f(b). Then there exists a number s in (a, b) 
such that f(s) = c.
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To establish the multiplicity of roots we do not need anything more 
advanced than the formula for factoring the difference of two monomials 
given by

 

xn − yn = x − y( ) xn−1 +xn−2y +xn−3y2 +…+ yn−1( )
= x − y( ) xn− j y j−1

j=1

j=n

∑
 

(1)

A convincing argument for the proof of this elementary result, which plays 
a crucial and central role here, can be given by simply multiplying the second 
quantity inside parentheses first by x and then by –y, and noticing that for 
each j, 1 < j < n, the term xxn–j yj–1 cancels the term –yxn–(j–1)yj–2. However, we 
include a more rigorous proof, using mathematical induction, below.

Proof by mathematical induction
It is obvious that for n = 1, the formula 

 

xn − yn = x − y( ) xn− j y j−1

j=1

j=n

∑

holds. Suppose that it is true for n = k. We wish to show that it is then also 
true for n = k + 1. By subtracting and adding the term xyk, we obtain (by the 
induction hypothesis)

 

xk+1 − yk+1 = xxk − yyk

= xxk −xyk +xyk − yyk

= x(xk − yk )+ yk(x − y)

= x(x − y) xk− j y j−1 + yk(x − y)
j=1

j=k

∑

Hence, 

 

xk+1 − yk+1 =(x − y) x xk− j y j−1 + yk

j=1

j=k

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=(x − y) xk+1− j y j−1 + yk

j=1

j=k

∑

=(x − y) xk+1− j y j−1

j=1

j=k+1

∑

Therefore, the formula holds for n = k + 1 and the proof is complete.

A couple of simple examples

We would like to point out that many textbooks prove that 2  is irrational by 
assuming that it is rational and then showing that this assumption leads to a 
contradiction. However, this argument is quite unsatisfactory unless they first 
show the existence of 2 . For example, −1 = i  is not rational but it is not 
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irrational either. One of the few books that does deal with the existence issue 
is the one by Robert G. Bartle and Donald R. Sherbert.

Example 1 
The number 2 has exactly two real square roots.

We recall that finding a square root of 2 is equivalent to finding the real roots 
of the equation

 x2 – 2 = 0 (2)  

Let f(x) = x2 – 2. Then, we have f(2)= 2 > 0 and f(1) = –1 < 0. Therefore, by 
the intermediate value theorem, there exists a number r1 between 1 and 2 
satisfying equation (2). We denote this number by r1 = 2 . In order to find a 
second square root of the number 2, we simply note that if r1 is a square root 
of 2, then so is r2 = –r1 = – 2 . We have now shown that equation (2) has two 
distinct roots and hence the number 2 has two distinct square roots r1 and 
r2. But we have not yet shown that it cannot have more than two. In order 
to do that, let r3 be any root of (2). Then equations r1

2 = 2 and r3
2 = 2 imply 

that r3
2 = r1

2; hence r3
2 – r1

2 = 0. Therefore, (r3 – r1)(r3 + r1) = 0, which implies 
that either r3 = r1 or r3 = –r1. This shows that there are no more than the two 
solutions r1 and r2, and hence 2 has exactly two distinct real square roots.

Example 2
The number –2 has exactly one real cube root.

Recall that a number x is a cube root of –2 if x3 = –2. Thus, finding the real 
cube roots of –2 is equivalent to finding the real roots of the equation

 x3 + 2 = 0 (3)

We note that for f(x) = x3 + 2, f(0) = 2 > 0 while f(–2) = –6 < 0. Consequently, 
by the intermediate value theorem, there exists a number s between –2 and 
0 satisfying equation (3). This shows that the number s is a cube root of the 
number –2, which we denote as s = −23 . Now we show that the cube root of 

–2 is unique. Let t be any cube root of –2. We will show that t = s. It follows that 
t < 0, since having t ≥ 0 and t3 + 2 = 0 would be impossible. Similarly, s < 0. Now, 
since s3 = –2 = t3, it follows that s3 – t3 = 0. Factoring s3 – t3, we obtain

 s3 – t3 = (s – t)(s2 + st + t2) = 0

Since s and t are both negative, we must have s2 + st + t2 > 0. This implies that 
we must have s – t = 0, or s = t. This shows that there is no more than one cube 
root of –2.
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Roots of real numbers in general

For the existence part, first we prove that every positive number c has a real 
nth root, where n is any natural number, n ≥ 2. We then use simple logic to 
completely analyse the existence of nth roots of all real numbers.

We first prove a simple lemma, not only for the sake of rigor but also 
because it demonstrates another nice application of our simple but useful 
factoring formula (1).

Lemma 1 
If a is a real number such that a > 1, then an > a.

Proof
In order to show that an – a > 0, since 1j–1 = 1, we can use our factoring formula 
to obtain 

 

an −a = a an−1 −1( )
= a an−1 −1n−1( )
= a(a −1) an− j

j=2

j=n

∑

Since a, a–1, and an− j

j=2

j=n

∑  are all positive, our assertion follows.

Theorem 1
Every positive real number c has at least one positive nth root, where n is a 
natural number, n ≥ 2.

Proof 
We want to show that the equation xn – c = 0 has a positive root. 
Let f(x) = xn – c. We note that f(0) = –c < 0. 
By Lemma 1, (c + 1)n > c + 1. 
Hence f(c + 1) = (c + 1)n – c > (c + 1) – c = (c – c) + 1 = 1 > 0. 
Therefore, by the intermediate value theorem, there exists a number r between 
0 and c + 1 such that rn – c = 0. 

The following theorem gives a complete characterisation of the nth roots of 
real numbers.

Theorem 2 
(a) If c is positive and n is even, then c has exactly two nth roots. 
(b) If c is negative and n is even, then c has no real nth roots.
(c) If c is any number, c ≠ 0, and n is odd, n ≥ 3, then c has exactly one nth 

root.
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Proof (a)
Let n = 2k, k ≥ 1. 
By Theorem 1, c has one real root, call it r1. 
We note that if r1 satisfies the equation x2k – c = 0 then so does –r1, since 

 

(−r1)
2k − c = (−r1)

2⎡⎣ ⎤⎦
k
− c

= r1
2⎡⎣ ⎤⎦

k
− c

= r1
2k − c

= 0

Now, suppose that r3 is any nth root of the number c. We will show that either 
r3 = r1 or r3 = r2.
We note that r1

2k – c = 0 and r3
2k – c = 0 imply that r1

2k – r3
2k = 0. Using our 

factoring formula (1) in a convenient form and substituting r1
2 for x and r3

2 
for y, we obtain 

 

r1
2k − r3

2k = r1
2( )k − r3

2( )k

= r1
2 − r3

2( ) r1
2( )k− j

. r3
2( ) j−1

j=1

j=k

∑
= 0  

(4)

Since 

 
� r1

2( )k− j
. r3

2( ) j−1

j=1

j=k

∑ > 0

we must have r1
2 – r3

2 = (r1 – r3)(r1 + r3) = 0, which implies that either r3 = r1 or 
r3 = –r1 = r2. This shows that c has no roots distinct from r1 and r2.

Proof (b)
This is obvious, since x2k cannot be equal to a negative number as x2k = (x2)k, 
and x2 ≥ 0 for all real values of x.

Proof (c)
Let n = 2k +1, k ≥ 1. If c > 0, then by Theorem 1, c has one real root . If c < 0, 
then –c > 0 and hence –c has a real root, by Theorem 1, call this root r1. Then 
r1 satisfies the equation 

 r1
2k+1 = –c

Let r2 = –r1. Then 

 r2
2k+1 = –r1

2k+1 = –(–c) = c

This shows that r2 is an nth root of c. We have shown that if n is odd, then any 
real number c has an nth root.
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Now we show that for n = 2k + 1, no non-zero real number c can have two 
distinct real nth roots. Suppose that c does have two distinct real nth roots r1 
and r2. We will show that this leads to a contradiction.

Since r1
2k+1 – c = 0 = r2

2k+1 – c, it follows that r1
2k+1 – r2

2k+1 = 0. Using the 
factoring formula, we obtain 

 
r1

2k+1 − r2
2k+1 = r1 − r2( ) r1

2k+1− jr2
j−1

j=1

j=2k+1

∑
 

(5)

We note that when n is odd and c is positive, then c cannot have a negative 
root since an odd power of a negative number cannot equal a positive number. 
Similarly, if c is negative, then it cannot have a positive nth root. Therefore, 
either both r1 and r2 are positive or they are both negative. If they are both 
positive, then certainly

 

r1
2k+1− jr2

j−1

j=1

j=2k+1

∑ > 0

If they are both negative, then we can write r1 = (–1)|r1| and r2 = (–1)|r2|, 
yielding

 r1
2k+1–j r2

j–1 =(–1)2k+1–j | r1 |
2k+1–j.(–1)j–1 | r2 |

j–1 =(–1)2k | r1 |
2k+1–j | r2 |

j–1 > 0

Therefore, whether the roots are positive or negative, the sum 

 

� r1
2( )k− j

. r3
2( ) j−1

j=1

j=k

∑ > 0

Hence it follows from (5) that we must have r1 – r2 = 0, contradiction to the 
assumption that they are distinct.

Appendix

An alternate proof of the main existence theorem.
Let us first recall some properties of real numbers and definitions.

Definition
A number b is called an upper bound of a non-empty set S if s ≤ b for all s in S. 
An upper bound b of S is called the least upper bound (lub) or supremum (sup) 
of S if for any upper bound c of S, b ≤ c.

Completeness property of real numbers 
If a non-empty set S of real numbers is bounded above, then it has a least 
upper bound.
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For any real number x there exists a natural number n such that x < n.

Trichotomy (of inequality)
For any two real numbers x and y, one of the following holds:

 x > y, x < y, x = y

Here we only prove the key result stated in Theorem 1 without using the 
intermediate value theorem, and then the complete analysis will follow the 
same way as before. But first, we demonstrate the method by giving a couple 
illustrative simple examples.

Example 3
The number 5 has a real cube root.

Let S = {real numbers s:s3 < 5}. Then S ≠ ∅, since, for example, 1 is in S. S is 
also bounded above, for example, by the number 2. For, s > 2 would imply 
that s3 > 8 > 5, which would show that s  ∉ S. Therefore, by the completeness 
property, Sup S exists. Let t = sup S. Then, by the trichotomy property, t3 

satisfies one of the following three mutually exclusive inequalities:
(I) t3 < 5
(II) t3 > 5
(III) t3 = 5
We now show that the first two options do not hold. 

Case (I)
We will show that (I) implies the existence of a natural number k such that  
t + 1

k
 is in S, contradiction to t being an upper bound of S. To this end, using 

the binomial theorem, we write

 

t + 1
k

⎛
⎝⎜

⎞
⎠⎟

3

= t 3 +3t 2 1
k
+3t

1
k

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
k

⎛
⎝⎜

⎞
⎠⎟

3

We note that

 

t 3 +3t 2 1
k
+3t

1
k

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
k

⎛
⎝⎜

⎞
⎠⎟

3

< t 3 +3t 2 1
k
+3t

1
k

⎛
⎝⎜

⎞
⎠⎟ +

1
k

Therefore, in order to show that t + 1
k( )3 , it suffices to show the existence of a 

natural number k satisfying the inequality

 

t 3 +3t 2 1
k
+3t

1
k
+ 1

k
< 5

which is equivalent to the inequality

 

1
k

3t 2 +3t +1( ) < 5− t 3
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or
 

k > 3t 2 +3t +1
5− t 3

The existence of such a number k follows from Archiomedean property. Notice 
that 5 – t3 > 0 by assumption (I). This shows that t + 1

k
 is in S, a contradiction.

Case (II) 
In this case, we wish to show the existence of a natural number k such that 
t − 1

k( )3  > 5 This will show that t – 1
k

 is an upper bound of S because s > t – 1
k

 
would imply s3 > t − 1

k( )3  > 5 and hence s is not in S. We note that 

 

t − 1
k

⎛
⎝⎜

⎞
⎠⎟

3

= t 3 −3t 2 1
k
+3t

1
k

⎛
⎝⎜

⎞
⎠⎟

2

− 1
k

⎛
⎝⎜

⎞
⎠⎟

3

> t 3 −3t 2 1
k
− 1

k

Thus it suffices to show the existence of a natural number k satisfying the 
inequality

 
t 3 −3t 2 1

k
− 1

k
> 5

which is equivalent to
 

t 3 − 5 > 1
k

3t 2 +1( )

or
 

k > 3t 2 +1
t 3 − 5

Notice that t3 – 5 is positive by (II). It is now clear that k satisfying the last 
inequality exists by Archimedean property. This rules out the second possibility. 
Therefore, we must have t3 = 5.

Although the proof of the general theorem uses arguments similar to those 
given in the examples, there are still some minor technicalities that one has to 
adjust. So, for the sake of completeness, we wish to record the general result 
below.

Theorem 1
Every positive real number c has at least one positive nth root, where n is a 
natural number, n ≥ 2.

Proof 
Let S = {real numbers s:sn < c}. Then S ≠ ∅; since, for example, 0 is in S. S is 
also bounded above; for example, by the number c + 1. For, s > c + 1 would 
imply that sn > (c + 1)n > c + 1, by Lemma 1, and hence sn > c, which would 
show that s ∉ S. Therefore, by the completeness property, sup S exists. Let t = 
sup S. Then, by the trichotomy property, tn satisfies one of the following three 
inequalities:
(I) tn < c
(II) tn > c
(III) tn = c. 
As in the above example, we now show that the first two options do not hold.
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First, we notice that S contains some positive numbers such as 

c
c+1 . Therefore 

t > 0. We now show that tn < c implies that there exists a natural number k such 
that t + 1

k  ∉ S, contradicting that t is an upper bound of S. By the binomial 
theorem,

 

t + 1
k

⎛
⎝⎜

⎞
⎠⎟

n

= n !
(n − j)! j !

t(n− j ) 1
k

⎛
⎝⎜

⎞
⎠⎟

j

j=0

j=n

∑

= t n + n !
(n − j)! j !j=1

j=n

∑ t(n− j ) 1
k

⎛
⎝⎜

⎞
⎠⎟

j

For any natural number j, 
1
k

⎛
⎝⎜

⎞
⎠⎟

j

< 1
k

 if j > 1. Therefore,

 
t + 1

k
⎛
⎝⎜

⎞
⎠⎟

n

< t n + 1
k

.
n !

(n − j)! j !j=1

j=n

∑ t n− j

For simplicity, let
 

B = n !
(n − j)! j !j=1

j=n

∑ t n− j

If we can show that a natural number k exists such that tn + 1
k B < c, then we will 

have shown that t + 1
k  is in S. But tn + 1

k B < c if 

 
k > B

c − t n

By assumption (I), c – tn > 0. Thus by Archimedean property, there exists a 
number k such that 

 
k > B

c − t n

This shows that (I) is false.

Case (II) 
In order to reach a contradiction, we will show the existence of a natural 
number k such that t − 1

k( )n  > c. Here we take k large enough so that t – 1
k  >  0. 

We note that s > t – 1
k  would imply that sn > t − 1

k( )n  > c; and therefore s cannot 
belong to S. Thus, t − 1

k( )n  > c would imply that t – 1
k  is an upper bound of S, 

contradicting the fact that t is the least upper bound of S. Now, we note that 

 

t − 1
k

⎛
⎝⎜

⎞
⎠⎟

n

= t n + n !
(n − j)! j !j=1

j=n

∑ t n− j −1
k

⎛
⎝⎜

⎞
⎠⎟

j

> t n + −1
k

n !
(n − j)! j !j=1

j=n

∑  t n− j

because −1
k

⎛
⎝⎜

⎞
⎠⎟

j
> −1

k  for j > 1. Therefore, it suffices to show the existence of a 
natural number k such that

 

t n − 1
k

n !
(n − j)! j !j=1

j=n

∑  t n− j > c
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For convenience of notation, let

 

B = n !
(n − j)! j !j=1

j=n

∑  t n− j

Our problem then is reduced to showing the existence of a natural number k 
such that

 
t n − 1

k
B > c

or equivalently
 

k > B
tn − c

which follows from Archimedean property. Note that tn – c > 0 by assumption. 
This completes the proof that option (II) is impossible. Hence tn = c.
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