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The Gaussian Density

Perhaps the most common probability density.

p(y |µ, σ2) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
= N

(
y |µ, σ2

)
The Gaussian density.
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Gaussian Density
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The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean shown
as red line. It could represent the heights of a population of students.
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Gaussian Density

N
(
y |µ, σ2

)
=

1√
2πσ2

exp

(
−(y − µ)

2

2σ2

)
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Two Important Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w 2σ2

)
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

y1 =mx1 + c

y2 =mx2 + c
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

m =
y2 − y1

x2 − x1

c = y1 −mx1

0
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y

x

c

y 1
−

y 2

x2 − x1

m =
y2−y1
x2−x1
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with only two
unknowns?

y1 =mx1 + c

y2 =mx2 + c

y3 =mx3 + c 0

1
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3

4

5

0 1 2 3
y

x

c

y 1
−

y 2

x2 − x1

m =
y2−y1
x2−x1
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Overdetermined System

With two unknowns and two observations:

y1 =mx1 + c

y2 =mx2 + c

Additional observation leads to overdetermined system.

y3 = mx3 + c

This problem is solved through a noise model ε ∼ N
(
0, σ2

)
y1 = mx1 + c + ε1

y2 = mx2 + c + ε2

y3 = mx3 + c + ε3
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Noise Models

We aren’t modeling entire system.

Noise model gives mismatch between model and data.

Gaussian model justified by appeal to central limit theorem.

Other models also possible (Student-t for heavy tails).

Maximum likelihood with Gaussian noise leads to least squares.
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Underdetermined System

What about two unknowns and one
observation?

y1 = mx1 + c

0
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0 1 2 3
y

x
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Underdetermined System

Can compute m given c.

m =
y1 − c

x
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0 1 2 3
y

x
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Underdetermined System

Can compute m given c.

c = 1.75 =⇒ m = 1.25
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Underdetermined System

Can compute m given c.

c = −0.777 =⇒ m = 3.78
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Underdetermined System

Can compute m given c.

c = −4.01 =⇒ m = 7.01
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Underdetermined System

Can compute m given c.

c = −0.718 =⇒ m = 3.72
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Underdetermined System

Can compute m given c.

c = 2.45 =⇒ m = 0.545
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Underdetermined System

Can compute m given c.

c = −0.657 =⇒ m = 3.66
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Underdetermined System

Can compute m given c.

c = −3.13 =⇒ m = 6.13
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Underdetermined System

Can compute m given c.

c = −1.47 =⇒ m = 4.47
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Underdetermined System

Can compute m given c.
Assume

c ∼ N (0, 4) ,

we find a distribution of solutions.
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Probability for Under- and Overdetermined

To deal with overdetermined introduced probability distribution for
‘variable’, εi .

For underdetermined system introduced probability distribution for
‘parameter’, c.

This is known as a Bayesian treatment.
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For general Bayesian inference need multivariate priors.

E.g. for multivariate linear regression:

yi =
∑
i

wjxi ,j + εi

(where we’ve dropped c for convenience), we need a prior over w.

This motivates a multivariate Gaussian density.

We will use the multivariate Gaussian to put a prior directly on the
function (a Gaussian process).
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Multivariate Regression Likelihood

Recall multivariate regression likelihood:

p(y|X,w) =
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(
yi −w>xi ,:

)2
)

Now use a multivariate Gaussian prior:

p(w) =
1

(2πα)
p
2

exp

(
− 1

2α
w>w

)
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Posterior Density

Once again we want to know the posterior:

p(w|y,X) ∝ p(y|X,w)p(w)

And we can compute by completing the square.

log p(w|y,X) =− 1

2σ2

n∑
i=1

y 2
i +

1

σ2

n∑
i=1

yix
>
i ,:w

− 1

2σ2

n∑
i=1

w>xi ,:x
>
i ,:w −

1

2α
w>w + const.

p(w|y,X) = N (w|µw ,Cw )

Cw = (σ−2X>X + α−1)−1 and µw = Cwσ
−2X>y
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Bayesian vs Maximum Likelihood

Note the similarity between posterior mean

µw = (σ−2X>X + α−1)−1σ−2X>y

and Maximum likelihood solution

ŵ = (X>X)−1X>y
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Marginal Likelihood is Computed as Normalizer

p(w|y,X)p(y|X) = p(y|w,X)p(w)
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Marginal Likelihood

Can compute the marginal likelihood as:

p(y|X, α, σ) = N
(

y|0, αXX> + σ2I
)
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Two Dimensional Gaussian

Consider height, h/m and weight, w/kg .

Could sample height from a distribution:

p(h) ∼ N (1.7, 0.0225)

And similarly weight:

p(w) ∼ N (75, 36)
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Height and Weight Models
p

(h
)

h/m

Marginal Distributions

p
(w

)
w/kg Gaussian

distributions for height and weight.

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 21 / 74



Sampling Two Dimensional Variables
w
/k

g

h/m

Joint Distribution

p
(h

)

Marginal Distributions

p
(w

)

Sample height and weight one after the other and plot against each other.
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Independence Assumption

This assumes height and weight are independent.

p(h,w) = p(h)p(w)

In reality they are dependent (body mass index) = w
h2 .
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Independent Gaussians

p(w , h) = p(w)p(h)
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Independent Gaussians

p(w , h) =
1√

2πσ2
1

√
2πσ2

2

exp

(
−1

2

(
(w − µ1)2

σ2
1

+
(h − µ2)2

σ2
2

))

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 25 / 74



Independent Gaussians

p(w , h) =
1

2π
√
σ2

1σ
2
2

exp

(
−1

2

([
w
h

]
−
[
µ1

µ2

])> [
σ2

1 0
0 σ2

2

]−1([
w
h

]
−
[
µ1

µ2

]))
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Independent Gaussians

p(y) =
1

2π |D|
exp

(
−1

2
(y − µ)>D−1(y − µ)

)
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

p(y) =
1

2π |D|
1
2

exp

(
−1

2
(y − µ)>D−1(y − µ)

)
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

p(y) =
1

2π |D|
1
2

exp

(
−1

2
(y − µ)>RD−1R>(y − µ)

)
this gives a covariance matrix:

C−1 = RD−1R>
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

p(y) =
1

2π |C|
1
2

exp

(
−1

2
(y − µ)>C−1(y − µ)

)
this gives a covariance matrix:

C = RDR>

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 26 / 74



Recall Univariate Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w 2σ2

)
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Multivariate Consequence

If
x ∼ N (µ,Σ)

And
y = Wx

Then
y ∼ N

(
Wµ,WΣW>

)
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Sampling a Function

Multi-variate Gaussians

We will consider a Gaussian with a particular structure of covariance
matrix.

Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

We will plot these points against their index.
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Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated random
variable (values ploted against index)

j
i

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b) colormap showing correlations between
dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated random
variable (values ploted against index)

1 0.96587

0.96587 1

(b) correlation between f1 and f2.

Figure: A sample from a 25 dimensional Gaussian distribution.
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Prediction of f2 from f1

-1

0

1

-1 0 1

f 1

f2

1 0.96587

0.96587 1

The single contour of the Gaussian density represents the joint
distribution, p(f1, f2).

We observe that f1 = −0.313.

Conditional density: p(f2|f1 = −0.313).
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Prediction with Correlated Gaussians

Prediction of f2 from f1 requires conditional density.

Conditional density is also Gaussian.

p(f2|f1) = N

(
f2|

k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1

)

where covariance of joint density is given by

K =

[
k1,1 k1,2

k2,1 k2,2

]
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Prediction of f5 from f1

-1

0

1

-1 0 1

f 1

f5

1 0.57375

0.57375 1

The single contour of the Gaussian density represents the joint
distribution, p(f1, f5).

We observe that f1 = −0.313.

Conditional density: p(f5|f1 = −0.313).
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Prediction with Correlated Gaussians

Prediction of f∗ from f requires multivariate conditional density.

Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK
−1
f,f Kf,∗

)

Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]
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p(f∗|f) = N (f∗|µ,Σ)

µ = K∗,fK
−1
f,f f

Σ = K∗,∗ −K∗,fK
−1
f,f Kf,∗
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−
‖x− x′‖2

2

2`2

)

Covariance matrix is built
using the inputs to the
function x.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00× exp
(
− (−3.0−−3.0)2

2×2.002

)
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Covariance Functions
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1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995 1.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0× exp
(
− (−3−−3)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0× exp
(
− (−3−−3)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0

0.11

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

0.089

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044 0.92

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92 0.96

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00× exp
(
− (−3.0−−3.0)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00× exp
(
− (−3.0−−3.0)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00

2.81

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 36 / 74



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

2.72

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 36 / 74



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Basis Function Form

Radial basis functions commonly have the form

φk (xi ) = exp

(
−|xi − µk |2

2`2

)
.

Basis function maps
data into a “feature
space” in which a
linear sum is a non
linear function.

0

0.5

1

-8 -6 -4 -2 0 2 4 6 8

φ
(x

)

x

Figure: A set of radial basis functions with width
` = 2 and location parameters µ = [−4 0 4]>.
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Basis Function Representations

Represent a function by a linear sum over a basis,

f (xi ,:; w) =
m∑

k=1

wkφk(xi ,:), (1)

Here: m basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wm]> .

For standard linear model: φk(xi ,:) = xi ,k .
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Random Functions

Functions derived using:

f (x) =
m∑

k=1

wkφk(x),

where W is sampled
from a Gaussian density,

wk ∼ N (0, α) .

-2

-1

0

1

2

-8 -6 -4 -2 0 2 4 6 8
f

(x
)

x
Figure: Functions sampled using the basis set from
figure 2. Each line is a separate sample, generated by
a weighted sum of the basis set. The weights, w are
sampled from a Gaussian density with variance α = 1.
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Direct Construction of Covariance Matrix

Use matrix notation to write function,

f (xi ; w) =
m∑

k=1

wkφk (xi )

computed at training data gives a vector

f = Φw.

w and f are only related by a inner product.

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

it is straightforward to compute distribution for f

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 41 / 74



Direct Construction of Covariance Matrix

Use matrix notation to write function,

f (xi ; w) =
m∑

k=1

wkφk (xi )

computed at training data gives a vector

f = Φw.

w and f are only related by a inner product.

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

it is straightforward to compute distribution for f

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 41 / 74



Direct Construction of Covariance Matrix

Use matrix notation to write function,

f (xi ; w) =
m∑

k=1

wkφk (xi )

computed at training data gives a vector

f = Φw.

w and f are only related by a inner product.

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

it is straightforward to compute distribution for f

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 41 / 74



Direct Construction of Covariance Matrix

Use matrix notation to write function,

f (xi ; w) =
m∑

k=1

wkφk (xi )

computed at training data gives a vector

f = Φw.

w and f are only related by a inner product.

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

it is straightforward to compute distribution for f

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 41 / 74



Direct Construction of Covariance Matrix

Use matrix notation to write function,

f (xi ; w) =
m∑

k=1

wkφk (xi )

computed at training data gives a vector

f = Φw.

w and f are only related by a inner product.

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

it is straightforward to compute distribution for f

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 41 / 74



Direct Construction of Covariance Matrix

Use matrix notation to write function,

f (xi ; w) =
m∑

k=1

wkφk (xi )

computed at training data gives a vector

f = Φw.

w and f are only related by a inner product.

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

it is straightforward to compute distribution for f

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 41 / 74



Direct Construction of Covariance Matrix

Use matrix notation to write function,

f (xi ; w) =
m∑

k=1

wkφk (xi )

computed at training data gives a vector

f = Φw.

w and f are only related by a inner product.

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

it is straightforward to compute distribution for f

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 41 / 74



Expectations

We use 〈·〉 to denote expectations under prior distributions.

We have
〈f〉 = φ 〈w〉 .

Prior mean of w was zero giving

〈f〉 = 0.

Prior covariance of f is

K =
〈

ff>
〉
− 〈f〉 〈f〉>

〈
ff>
〉

= Φ
〈

ww>
〉
Φ>,

giving
K = γ′ΦΦ>.
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Covariance between Two Points

The prior covariance between two points xi and xj is

k (xi , xj) = γ′
m∑
`

φ` (xi )φ` (xj)

or in vector form

k (xi , xj) = φ: (xi )
> φ: (xj) ,

For the radial basis used this gives

k (xi , xj) = γ′
m∑

k=1

exp

(
−
|xi − µk |2 + |xj − µk |2

2`2

)
.
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Selecting Number and Location of Basis

Need to choose
1 location of centers
2 number of basis functions

Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
m∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 44 / 74



Selecting Number and Location of Basis

Need to choose
1 location of centers
2 number of basis functions

Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
m∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 44 / 74



Selecting Number and Location of Basis

Need to choose
1 location of centers
2 number of basis functions

Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
m∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 44 / 74



Selecting Number and Location of Basis

Need to choose
1 location of centers
2 number of basis functions

Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
m∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 44 / 74



Uniform Basis Functions

Set each center location to

µk = a + ∆µ · (k − 1).

Specify the bases in terms of their indices,

k (xi , xj) =γ∆µ
m∑

k=1

exp

(
−

x2
i + x2

j

2`2

−
2 (a + ∆µ · k) (xi + xj) + 2 (a + ∆µ · k)2

2`2

)
.
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Infinite Basis Functions

Take µ0 = a and µm = b so b = a + ∆µ · (m − 1).

Take limit as ∆µ→ 0 so m→∞

k(xi , xj) =γ

∫ b

a
exp

(
−

x2
i + x2

j

2`2

+
2
(
µ− 1

2 (xi + xj)
)2 − 1

2 (xi + xj)
2

2`2

)
dµ,

where we have used k ·∆µ→ µ.
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Result

Performing the integration leads to

k(xi ,xj) = γ

√
π`2

2
exp

(
−

(xi − xj)
2

4`2

)

×

[
erf

((
b − 1

2 (xi + xj)
)

`

)
− erf

((
a− 1

2 (xi + xj)
)

`

)]
,

Now take limit as a→ −∞ and b →∞

k (xi , xj) = α exp

(
−

(xi − xj)
2

4`2

)
.

where α = γ
√
π`2.

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 47 / 74



Result

Performing the integration leads to

k(xi ,xj) = γ

√
π`2

2
exp

(
−

(xi − xj)
2

4`2

)

×

[
erf

((
b − 1

2 (xi + xj)
)

`

)
− erf

((
a− 1

2 (xi + xj)
)

`

)]
,

Now take limit as a→ −∞ and b →∞

k (xi , xj) = α exp

(
−

(xi − xj)
2

4`2

)
.

where α = γ
√
π`2.

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 47 / 74



Result

Performing the integration leads to

k(xi ,xj) = γ

√
π`2

2
exp

(
−

(xi − xj)
2

4`2

)

×

[
erf

((
b − 1

2 (xi + xj)
)

`

)
− erf

((
a− 1

2 (xi + xj)
)

`

)]
,

Now take limit as a→ −∞ and b →∞

k (xi , xj) = α exp

(
−

(xi − xj)
2

4`2

)
.

where α = γ
√
π`2.

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 47 / 74



Infinite Feature Space

A RBF model with infinite basis functions is a Gaussian process.

The covariance function is the exponentiated quadratic.

Note: The functional form for the covariance function and basis
functions are similar.

I this is a special case,
I in general they are very different

Similar results can obtained for multi-dimensional input networks ??.
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Nonparametric Gaussian Processes

This work takes us from parametric to non-parametric.

The limit implies infinite dimensional w.

Gaussian processes are generally non-parametric: combine data with
covariance function to get model.

This representation cannot be summarized by a parameter vector of a
fixed size.
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The Parametric Bottleneck

Parametric models have a representation that does not respond to
increasing training set size.

Bayesian posterior distributions over parameters contain the
information about the training data.

I Use Bayes’ rule from training data, p (w|y,X),
I Make predictions on test data

p (y∗|X∗, y,X) =

∫
p (y∗|w,X∗) p (w|y,X)dw) .

w becomes a bottleneck for information about the training set to pass
to the test set.

Solution: increase m so that the bottleneck is so large that it no
longer presents a problem.

How big is big enough for m? Non-parametrics says m→∞.
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The Parametric Bottleneck

Now no longer possible to manipulate the model through the standard
parametric form given in (1).

However, it is possible to express parametric as GPs:

k (xi , xj) = φ: (xi )
> φ: (xj) .

These are known as degenerate covariance matrices.

Their rank is at most m, non-parametric models have full rank
covariance matrices.

Most well known is the “linear kernel”, k(xi , xj) = x>i xj .
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Making Predictions

For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

In GPs this involves combining the training data with the covariance
function and the mean function.

Parametric is a special case when conditional prediction can be
summarized in a fixed number of parameters.

Complexity of parametric model remains fixed regardless of the size of
our training data set.

For a non-parametric model the required number of parameters grows
with the size of the training data.
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Covariance Functions

RBF Basis Functions

k
(
x, x′

)
= αφ(x)>φ(x′)

φi (x) = exp

(
−
‖x − µi‖2

2

`2

)

µ =

−1
0
1


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Covariance Functions and Mercer Kernels

Mercer Kernels and Covariance Functions are similar.

the kernel perspective does not make a probabilistic interpretation of
the covariance function.

Algorithms can be simpler, but probabilistic interpretation is crucial
for kernel parameter optimization.
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Constructing Covariance Functions

Sum of two covariances is also a covariance function.

k(x, x′) = k1(x, x′) + k2(x, x′)

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 56 / 74



Constructing Covariance Functions

Product of two covariances is also a covariance function.

k(x, x′) = k1(x, x′)k2(x, x′)

Urtasun and Lawrence () Session 1: GP and Regression CVPR Tutorial 57 / 74



Multiply by Deterministic Function

If f (x) is a Gaussian process.

g(x) is a deterministic function.

h(x) = f (x)g(x)

Then
kh(x, x′) = g(x)kf (x, x′)g(x′)

where kh is covariance for h(·) and kf is covariance for f (·).
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Covariance Functions

MLP Covariance Function

k
(
x, x′

)
= αasin

(
wx>x′ + b

√
wx>x + b + 1

√
wx′>x′ + b + 1

)

Based on infinite neural
network model.

w = 40

b = 4
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Covariance Functions

Linear Covariance Function

k
(
x, x′

)
= αx>x′

Bayesian linear regression.

α = 1
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Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. (?)). Interpolation through outputs from
slow computer simulations (e.g. atmospheric carbon levels).
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Noise Models

Graph of a GP

Relates input variables, X,
to vector, y, through f
given kernel parameters θ.

Plate notation indicates
independence of yi |fi .
Noise model, p (yi |fi ) can
take several forms.

Simplest is Gaussian
noise.

yi

X

fi

θ

i = 1 . . . n

Figure: The Gaussian process
depicted graphically.
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Gaussian Noise

Gaussian noise model,

p (yi |fi ) = N
(
yi |fi , σ2

)
where σ2 is the variance of the noise.

Equivalent to a covariance function of the form

k(xi , xj) = δi ,jσ
2

where δi ,j is the Kronecker delta function.

Additive nature of Gaussians means we can simply add this term to
existing covariance matrices.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

N (y|0,K) =
1

(2π)
n
2 |K|

exp

(
−y>K−1y

2

)
The parameters are inside the covariance function

(matrix).

ki ,j = k(xi , xj ;θ)
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

logN (y|0,K) = −n
2
log 2π−1

2
log |K|−y>K−1y
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The parameters are inside the covariance function
(matrix).
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

E (θ) =
1

2
log |K| + y>K−1y

2

The parameters are inside the covariance function
(matrix).

ki ,j = k(xi , xj ;θ)
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Eigendecomposition of Covariance

K = RΛ2R>

λ1

λ2

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣Λ2
∣∣ = |Λ|2.
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Capacity control: log |K|

λ1 0

0 λ2

λ1

Λ =
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Capacity control: log |K|

|Λ| = λ1λ2λ3
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Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2

λ1

λ2

|Λ|
RΛ =
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Data Fit: y−1K−1y
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?
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Gene Expression Example

Global expression estimation with l = 30

Global expression estimation with l = 15.6

Data from ?. Figure from ?.
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Limitations of Gaussian Processes

Inference is O(n3) due to matrix inverse (in practice use Cholesky).

Gaussian processes don’t deal well with discontinuities (financial
crises, phosphorylation, collisions, edges in images).

Widely used exponentiated quadratic covariance (RBF) can be too
smooth in practice (but there are many alternatives!!).
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Summary

Broad introduction to Gaussian processes.
I Started with Gaussian distribution.
I Motivated Gaussian processes through the multivariate density.

Emphasized the role of the covariance (not the mean).

Performs nonlinear regression with error bars.

Parameters of the covariance function (kernel) are easily optimized
with maximum likelihood.
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