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Abstract

We introduce Plenoxels (plenoptic voxels), a system for
photorealistic view synthesis. Plenoxels represent a scene as
a sparse 3D grid with spherical harmonics. This representa-
tion can be optimized from calibrated images via gradient
methods and regularization without any neural components.
On standard, benchmark tasks, Plenoxels are optimized two
orders of magnitude faster than Neural Radiance Fields with
no loss in visual quality. For video and code, please see
https://alexyu.net/plenoxels.

1. Introduction

A recent body of research has capitalized on implicit,
coordinate-based neural networks as the 3D representation
to optimize 3D volumes from calibrated 2D image super-
vision. In particular, Neural Radiance Fields (NeRF) [26]
demonstrated photorealistic novel viewpoint rendering, cap-
turing scene geometry as well as view-dependent effects.
This impressive quality, however, requires extensive com-
putation time for both training and rendering, with training
lasting more than a day and rendering requiring 30 sec-
onds per frame, on a single GPU. Multiple subsequent pa-
pers [8, 9, 19, 35, 36, 56] reduced this computational cost,
particularly for rendering, but single GPU training still re-
quires multiple hours, a bottleneck that limits the practical
application of photorealistic volumetric reconstruction.

In this paper, we show that we can train a radiance field
from scratch, without neural networks, while maintaining
NeRF quality and reducing optimization time by two orders
of magnitude. We provide a custom CUDA [29] implemen-
tation that capitalizes on the model simplicity to achieve
substantial speedups. Our typical optimization time on a
single Titan RTX GPU is 11 minutes on bounded scenes
(compared to roughly 1 day for NeRF, more than a 100×
speedup) and 27 minutes on unbounded scenes (compared
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Figure 1. Plenoxel: Plenoptic Volume Elements for fast optimiza-
tion of radiance fields. We show that direct optimization of a fully
explicit 3D model can match the rendering quality of modern neural
based approaches such as NeRF while optimizing over two orders
of magnitude faster.

to roughly 4 days for NeRF++ [57], again more than a 100×
speedup). Although our implementation is not optimized for
fast rendering, we can render novel viewpoints at interactive
rates 15 fps. If faster rendering is desired, our optimized
Plenoxel model can be converted into a PlenOctree [56].

Specifically, we propose an explicit volumetric represen-
tation, based on a view-dependent sparse voxel grid without
any neural networks. Our model can render photorealistic
novel viewpoints and be optimized end-to-end from cali-
brated 2D photographs, using the differentiable rendering
loss on training views as well as a total variation regularizer.

1

ar
X

iv
:2

11
2.

05
13

1v
1 

 [
cs

.C
V

] 
 9

 D
ec

 2
02

1

https://alexyu.net/plenoxels


We call our model Plenoxel for plenoptic volume elements,
as it consists of a sparse voxel grid in which each voxel stores
opacity and spherical harmonic coefficients. These coeffi-
cients are interpolated to model the full plenoptic function
continuously in space. To achieve high resolution on a single
GPU, we prune empty voxels and follow a coarse to fine
optimization strategy. Although our core model is a bounded
voxel grid, we can model unbounded scenes by using nor-
malized device coordinates (for forward-facing scenes) or
by surrounding our grid with multisphere images to encode
the background (for 360◦ scenes).

Our method reveals that photorealistic volumetric recon-
struction can be approached using standard tools from in-
verse problems: a data representation, a forward model, a
regularization function, and an optimizer. Our method shows
that each of these components can be simple and state of
the art results can still be achieved. Our experiments suggest
the key element of Neural Radiance Fields is not the neural
network but the differentiable volumetric renderer.

2. Related Work
Classical Volume Reconstruction. We begin with a brief
overview of classical methods for volume reconstruction,
focusing on those which find application in our work. In
particular, the most common classical methods for volume
rendering are voxel grids [6, 13, 20, 41–43, 51] and multi-
plane images (MPIs) [25, 32, 46, 47, 55, 59]. Voxel grids are
capable of representing arbitrary topologies but can be mem-
ory limited at high resolution. One approach for reducing
the memory requirement for voxel grids is to encode hier-
archical structure, for instance using octrees [11, 38, 50, 52]
(see [16] for a survey); we use an even simpler sparse array
structure. Using these grid-based representations combined
with some form of interpolation produces a continuous repre-
sentation that can be arbitrarily resized using standard signal
processing methods (see [30] for reference). This combi-
nation of sparsity and interpolation enables even a simple
grid-based model to represent 3D scenes at high resolution
without prohibitive memory requirements. We combine this
classical sampling and interpolation paradigm with the for-
ward volume rendering formula introduced by Max [22]
(based on work from Kajiya and Von Herzen [12] and used
in NeRF) to directly optimize a 3D model from indirect 2D
observations. We further extend these classical approaches
by modeling view dependence, which we accomplish by
optimizing spherical harmonic coefficients for each color
channel at each voxel. Spherical harmonics are a standard
basis for functions over the sphere, and have been used pre-
viously to represent view dependence [3, 34, 45, 56].

Neural Volume Reconstruction. Recently, dramatic im-
provements in neural volume reconstruction have renewed
interest in this direction. Neural implicit representations were

first used to model occupancy [5, 21, 24] and signed distance
to an object’s surface [31, 48], and perform novel view syn-
thesis from 3D point clouds [1, 17, 40, 54]. Several papers
extended this idea of neural implicit 3D modeling to model
a scene using only calibrated 2D image supervision via a
differentiable volume rendering formulation [20, 26, 43, 44].

NeRF [26] in particular uses a differentiable volume ren-
dering formula to train a coordinate-based multilayer per-
ceptron (MLP) to directly predict color and opacity from 3D
position and 2D viewing direction. NeRF produces impres-
sive results but requires several days for full training, and
about half an minute to render a full image, because every
rendered pixel requires evaluating the coordinate-based MLP
at hundreds of sample locations along the corresponding ray.
Many papers have since extended the capabilities of NeRF,
including modeling the background in 360◦ views [57] and
incorporating anti-aliasing for multiscale rendering [2]. We
extend our Plenoxel method to unbounded 360◦ scenes using
a background model inspired by NeRF++ [57].

Of these methods, Neural Volumes [20] is the most simi-
lar to ours in that it uses a voxel grid with interpolation, but
optimizes this grid through a convolutional neural network
and applies a learned warping function to improve the ef-
fective resolution (of a 1283 grid). We show that the voxel
grid can be optimized directly and high resolution can be
achieved by pruning and coarse to fine optimization, without
any neural networks or warping functions.

Accelerating NeRF. In light of the substantial computa-
tional requirements of NeRF for both training and rendering,
many recent papers have proposed methods to improve effi-
ciency, particularly for rendering. Among these methods are
many that achieve speedup by subdividing the 3D volume
into regions that can be processed more efficiently [19, 35].
Other speedup approaches have focused on a range of com-
putational and pre- or post-processing methods to remove
bottlenecks in the original NeRF formulation. JAXNeRF [7],
a JAX [4] reimplementation of NeRF offers a speedup for
both training and rendering via parallelization across many
GPUs or TPUs. AutoInt [18] restructures the coordinate-
based MLP to compute ray integrals exactly, for more than
10× faster rendering with a small loss in quality. Learned
Initializations [49] employs meta-learning on many scenes to
start from a better MLP initialization, for both > 10× faster
training and better priors when per-scene data is limited.
Other methods [14, 27, 33] achieve speedup by predicting a
surface or sampling near the surface, reducing the number
of samples necessary for rendering each ray.

Another approach is to pretrain a NeRF (or similar model)
and then extract it into a different data structure that can
support fast inference [8, 9, 36, 56]. In particular, PlenOc-
trees [56] extracts a NeRF variant into a sparse voxel grid
in which each voxel represents view-dependent color us-
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Figure 2. Overview of our sparse Plenoxel model. Given a set of images of an object or scene, we reconstruct a (a) sparse voxel (“Plenoxel”)
grid with density and spherical harmonic coefficients at each voxel. To render a ray, we (b) compute the color and opacity of each sample point
via trilinear interpolation of the neighboring voxel coefficients. We integrate the color and opacity of these samples using (c) differentiable
volume rendering, following the recent success of NeRF [26]. The voxel coefficients can then be (d) optimized using the standard MSE
reconstruction loss relative to the training images, along with a total variation regularizer.

ing spherical harmonic coefficients. Because the extracted
PlenOctree can be further optimized, this method can speed
up training by roughly 3×, and because it uses an efficient
GPU octree implementation without any MLP evaluations,
it achieves > 3000× rendering speedup. Our method ex-
tends PlenOctrees to perform end-to-end optimization of a
sparse voxel representation with spherical harmonics, offer-
ing much faster training (two orders of magnitude speedup
compared to NeRF). Our Plenoxel model is a generalization
of PlenOctrees to support sparse plenoptic voxel grids of
arbitrary resolution (not necessary powers of two) with the
ability to perform trilinear interpolation, which is easier to
implement with this sparse voxel structure.

3. Method

Our model is a sparse voxel grid in which each occupied
voxel corner stores a scalar opacity σ and a vector of spheri-
cal harmonic (SH) coefficients for each color channel. From
here on we refer to this representation as Plenoxel. The opac-
ity and color at an arbitrary position and viewing direction
are determined by trilinearly interpolating the values stored
at the neighboring voxels and evaluating the spherical har-
monics at the appropriate viewing direction. Given a set of
calibrated images, we optimize our model directly using the
rendering loss on training rays. Our model is illustrated in
Fig. 2 and described in detail below.

3.1. Volume Rendering

We use the same differentiable model for volume render-
ing as in NeRF, where the color of a ray is approximated by

integrating over samples taken along the ray:

Ĉ(r) =

N∑
i=1

Ti
(
1− exp(−σiδi)

)
ci (1)

where Ti = exp

− i−1∑
j=1

σjδj

 (2)

Ti represents how much light is transmitted through ray
r to sample i (versus contributed by preceding samples),
(1− exp(−σiδi)) denotes how much light is contributed
by sample i, σi denotes the opacity of sample i, and ci
denotes the color of sample i, with distance δi to the next
sample. Although this formula is not exact (it assumes single-
scattering [12] and constant values between samples [22]), it
is differentiable and enables updating the 3D model based
on the error of each training ray.

3.2. Voxel Grid with Spherical Harmonics

Similar to PlenOctrees [56], we use a sparse voxel grid
for our geometry model. However, for simplicity and ease
of implementing trilinear interpolation, we do not use an
octree for our data structure. Instead, we store a dense 3D
index array with pointers into a separate data array con-
taining values for occupied voxels only. Like PlenOctrees,
each occupied voxel stores a scalar opacity σ and a vector
of spherical harmonic coefficients for each color channel.
Spherical harmonics form an orthogonal basis for functions
defined over the sphere, with low degree harmonics encoding
smooth (more Lambertian) changes in color and higher de-
gree harmonics encoding higher-frequency (more specular)
effects. The color of a sample ci is simply the sum of these
harmonic basis functions for each color channel, weighted
by the corresponding optimized coefficients and evaluated
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at the appropriate viewing direction. We use spherical har-
monics of degree 2, which requires 9 coefficients per color
channel for a total of 27 harmonic coefficients per voxel.
We use degree 2 harmonics because PlenOctrees found that
higher order harmonics confer only minimal benefit.

Our Plenoxel grid uses trilinear interpolation to define a
continuous plenoptic function throughout the volume. This
is in contrast to PlenOctrees, which assumes that the opacity
and spherical harmonic coefficients remain constant inside
each voxel. This difference turns out to be an important
factor in successfully optimizing the volume, as we discuss
below. All coefficients (for opacity and spherical harmonics)
are optimized directly, without any special initialization or
pretraining with a neural network.

3.3. Interpolation

The opacity and color at each sample point along each
ray are computed by trilinear interpolation of opacity and
harmonic coefficients stored at the nearest 8 voxels. We find
that trilinear interpolation significantly outperforms a sim-
pler nearest neighbor interpolation; an ablation is presented
in Tab. 1. The benefits of interpolation are twofold: inter-
polation increases the effective resolution by representing
sub-voxel variations in color and opacity, and interpolation
produces a continuous function approximation that is critical
for successful optimization. Both of these effects are evident
in Tab. 1: doubling the resolution of a nearest-neighbor-
interpolating Plenoxel closes much of the gap between near-
est neighbor and trilinear interpolation at a fixed resolution,
yet some gap remains due to the difficulty of optimizing a
discontinuous model. Indeed, we find that trilinear interpo-
lation is more stable with respect to variations in learning
rate compared to nearest neighbor interpolation (we tuned
the learning rates separately for each interpolation method
in Tab. 1, to provide close to the best number possible for
each setup).

PSNR ↑ SSIM ↑ LPIPS ↓
Trilinear, 2563 30.57 0.950 0.065
Trilinear, 1283 28.46 0.926 0.100
Nearest Neighbor, 2563 27.17 0.914 0.119
Nearest Neighbor, 1283 23.73 0.866 0.176

Table 1. Ablation over interpolation method. Results are aver-
aged over the 8 NeRF synthetic scenes. We find that trilinear inter-
polation provides dual benefits of improving effective resolution
and improving optimization, such that trilinear interpolation at res-
olution 1283 outperforms nearest neighbor interpolation at 2563.

3.4. Coarse to Fine

We achieve high resolution via a coarse-to-fine strategy
that begins with a dense grid at lower resolution, optimizes,

prunes unnecessary voxels, refines the remaining voxels by
subdividing each in half in each dimension, and continues
optimizing. For example, in the synthetic case, we begin
with 2563 resolution and upsample to 5123. We use trilinear
interpolation to initialize the grid values after each voxel
subdivision step. In fact, we can resize between arbitrary
resolutions using trilinear interpolation. Voxel pruning is per-
formed using the method from PlenOctrees [56], which ap-
plies a threshold to the maximum weight Ti(1−exp(−σiδi))
of each voxel over all training rays (or, alternatively, to the
density value in each voxel). Due to trilinear interpolation,
naively pruning can adversely impact the the color and den-
sity near surfaces since values at these points interpolate with
the voxels in the immediate exterior. To solve this issue, we
perform a dilation operation so that a voxel is only pruned if
both itself and its neighbors are deemed unoccupied.

3.5. Optimization

We optimize voxel opacities and spherical harmonic co-
efficients with respect to the mean squared error (MSE) over
rendered pixel colors, with total variation (TV) regulariza-
tion [39]. Specifically, our base loss function is:

L = Lrecon + λTV LTV (3)

Where the MSE reconstruction loss Lrecon and the total
variation regularizer LTV are:

Lrecon =
1

|R|
∑
r∈R
‖C(r)− Ĉ(r)‖22

LTV =
1

|V|
∑
v∈V
d∈[D]

√
∆2
x(v, d) + ∆2

y(v, d) + ∆2
z(v, d)

with ∆2
x(v, d) shorthand for the squared difference between

the dth value in voxel v := (i, j, k) and the dth value in voxel
(i+ 1, j, k) normalized by the resolution, and analogously
for ∆2

y(v, d) and ∆2
z(v, d). Note in practice we use different

weights for SH coefficients and σ values. These weights
are fixed for each scene type (bounded, forward-facing, and
360◦).

For faster iteration, we use a stochastic sample of the rays
R to evaluate the MSE term and a stochastic sample of the
voxels V to evaluate the TV term in each optimization step.
We use the same learning rate schedule as JAXNeRF and
Mip-NeRF [2, 7], but tune the initial learning rate separately
for opacity and harmonic coefficients. The learning rate is
fixed for all scenes in all datasets in the main experiments.

Directly optimizing voxel coefficients is a challenging
problem for several reasons: there are many values to op-
timize (the problem is high-dimensional), the optimization
objective is nonconvex due to the rendering formula, and
the objective is poorly conditioned. Poor conditioning is
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Full No SH TV No σ TV No TV

Figure 3. Ablation over TV regularization. Clear artifacts are
visible in the forward-facing scenes without TV on both σ and SH
coefficients, although PSNR does not always reflect this.

typically best resolved by using a second order optimiza-
tion algorithm (e.g. as recommended in [28]), but this is
practically challenging to implement for a high-dimensional
optimization problem because the Hessian is too large to
easily compute and invert in each step. Instead, we use RM-
SProp [10] to ease the ill-conditioning problem without the
full computational complexity of a second-order method.

3.6. Unbounded Scenes

We show that Plenoxels can be optimized for a wide range
of settings beyond the synthetic scenes from the original
NeRF paper.

With minor modifications, Plenoxels extend to real, un-
bounded scenes, both forward-facing and 360◦. For forward-
facing scenes, we use the same sparse voxel grid structure
with normalized device coordinates, as defined in the original
NeRF paper [26].

Background model. For 360◦ scenes, we augment our
sparse voxel grid foreground representation with a multi-
sphere image (MSI) background model, which also uses
learned voxel colors and opacities with trilinear interpola-
tion within and between spheres. Note that this is effectively
the same as our foreground model, except the voxels are
warped into spheres using the simple equirectangular projec-
tion (voxels index over sphere angles θ and φ). We place 64
spheres linearly in inverse radius from 1 to∞ (we pre-scale
the inner scene to be approximately contained in the unit
sphere). To conserve memory, we store only rgb channels for
the colors (only zero-order SH) and store all layers sparsely
by using opacity thresholding as in our main model. This is
similar to the background model in NeRF++ [57].

3.7. Regularization

We illustrate the importance of TV regularization in Fig. 3.
In addition to TV regularization, which encourages smooth-
ness and is used on all scenes, for certain types of scenes we
also use additional regularizers.

On the real, forward-facing and 360◦ scenes, we use a

sparsity prior based on a Cauchy loss following SNeRG [9]:

Ls = λs
∑
i,k

log
(
1 + 2σ(ri(tk))2

)
(4)

where σ(ri(tk)) denotes the opacity of sample k along train-
ing ray i. In each minibatch of optimization on forward-
facing scenes, we evaluate this loss term at each sample
on each active ray. This is also similar to the sparsity loss
used in PlenOctrees [56] and encourages voxels to be empty,
which helps to save memory and reduce quality loss when
upsampling.

On the real, 360◦ scenes, we also use a beta distribution
regularizer on the accumulated foreground transmittance of
each ray in each minibatch. This loss term, following Neu-
ral Volumes [20], promotes a clear foreground-background
decomposition by encouraging the foreground to be either
fully opaque or empty. This beta loss is:

Lβ = λβ
∑
r

(log(TFG(r)) + log(1− TFG(r))) (5)

where r are the training rays and TFG(r) is the accumulated
foreground transmittance (between 0 and 1) of ray r.

3.8. Implementation

Since sparse voxel volume rendering is not well-
supported in modern autodiff libraries, we created a cus-
tom PyTorch CUDA [29] extension library to achieve fast
differentiable volume rendering; we hope practitioners will
find this implementation useful in their applications. We also
provide a slower, higher-level JAX [4] implementation. Both
implementations will be released to the public.

The speed of our implementation is possible in large part
because the gradient of our Plenoxel model becomes very
sparse very quickly, as shown in Fig. 4. Within the first 1-2
minutes of optimization, fewer than 10% of the voxels have
nonzero gradients.

4. Results
We present results on synthetic, bounded scenes; real,

unbounded, forward-facing scenes; and real, unbounded,
360◦ scenes. We include time trial comparisons with prior
work, showing dramatic speedup in training compared to all
prior methods (alongside real-time rendering). Quantitative
comparisons are presented in Tab. 2, and visual comparisons
are shown in Fig. 6, Fig. 7, and Fig. 8. Our method achieves
quality results after even the first epoch of optimization, less
than 1.5 minutes, as shown in Fig. 5.

We also present the results from various ablation studies
of our method. In the main text we present average results
(PSNR, SSIM [53], and VGG LPIPS [58]) over all scenes
of each type; full results on each scene individually are
included in the supplement. We include full experimental
details (hyperparameters, etc.) in the supplement.
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Figure 4. Gradient sparsity. The gradient becomes very sparse
spatially within the first 12800 batches (one epoch for the synthetic
scenes), with as few as 1% of the voxels updating per batch in the
synthetic case. This enables efficient training via sparse parameter
updates. The solid lines show the mean and the shaded regions
show the full range of values among all scenes of each type.

PSNR ↑ SSIM ↑ LPIPS ↓ Train Time

Ours 31.71 0.958 0.049 11 mins
NV [20] 26.05 0.893 0.160 >1 day
JAXNeRF [7, 26] 31.85 0.954 0.072 1.45 days

Ours 26.29 0.839 0.210 24 mins
LLFF [25] 24.13 0.798 0.212 —*
JAXNeRF [7, 26] 26.71 0.820 0.235 1.62 days

Ours 20.40 0.696 0.420 27 mins
NeRF++ [57] 20.49 0.648 0.478 ∼4 days

Table 2. Results. Top: average over the 8 synthetic scenes from
NeRF; Middle: the 8 real, forward-facing scenes from NeRF; Bot-
tom: the 4 real, 360◦ scenes from Tanks and Temples [15]. 4 of the
synthetic scenes train in under 10 minutes. *LLFF requires pretrain-
ing a network to predict MPIs for each view, and then can render
novel scenes without further training; this pretraining is amortized
across all scenes so we do not include it in the table.

4.1. Synthetic Scenes

Our synthetic experiments use the 8 scenes from NeRF:
chair, drums, ficus, hotdog, lego, materials, mic, and ship.
Each scene includes 100 ground truth training views with
800 × 800 resolution, from known camera positions dis-
tributed randomly in the upper hemisphere facing the object,
which is set against a plain white background. Each scene
is evaluated on 200 test views, also with resolution 800 ×
800 and known inward-facing camera positions in the upper
hemisphere. We provide quantitative comparisons in Tab. 2
and visual comparisons in Fig. 6.

We compare our method to Neural Volumes (NV) [20]

(as a prior method that predicts a grid for each scene, using
a 3D convolutional network), and JAXNeRF [7, 26]. For
Neural Volumes we use values reported in [26]; for JAXN-
eRF we report results from our own rerunning, fixing the
centered pixel bug. Our method achieves comparable quality
compared to the best baseline, while training in an average
of 11 minutes per scene on a single GPU and supporting
interactive rendering.

4.2. Real Forward-Facing Scenes

We extend our method to unbounded, forward-facing
scenes by using normalized device coordinates (NDC), as
derived in NeRF [26]. Our method is otherwise identical to
the version we use on bounded, synthetic scenes, except that
we use TV regularization (with a stronger weight) throughout
the optimization. This change is likely necessary because of
the reduced number of training views for these scenes, as
described in Sec. 4.4.

Our forward-facing experiments use the same 8 scenes
as in NeRF, 5 of which are originally from LLFF [25]. Each
scene consists of 20 to 60 forward-facing images captured
by a handheld cell phone with resolution 1008 × 756, with
7
8 of the images used for training and the remaining 1

8 of the
images reserved as a test set.

We compare our method to Local Light Field Fusion
(LLFF) [25] (a prior method that uses a 3D convolutional
network to predict a grid for each input view) and JAXNeRF.
We provide quantitative comparisons in Tab. 2 and visual
comparisons in Fig. 7.

4.3. Real 360◦ Scenes

We extend our method to real, unbounded, 360◦ scenes by
surrounding our sparse voxel grid with an multi-sphere im-
age (MSI, based on multi-plane images introduced by [59])
background model, in which each background sphere is also
a simple voxel grid with trilinear interpolation (both within
each sphere and between adjacent background sphere lay-
ers).

Our 360◦ experiments use 4 scenes from the Tanks and
Temples dataset [15]: M60, playground, train, and truck. For
each scene, we use the same train/test split as [37].

We compare our method to NeRF++ [57], which aug-
ments NeRF with a background model to represent un-
bounded scenes. We present quantitative comparisons in
Tab. 2 and visual comparisons in Fig. 8.

4.4. Ablation Studies

In this section, we perform extensive ablation studies
of our method to understand which features are core to its
success, with such a simple model. In Tab. 1, we show that
continuous (in our case, trilinear) interpolation is responsible
for dramatic improvement in fidelity compared to nearest
neighbor interpolation (i.e. constant within each voxel) [56].
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Figure 5. 1 minute, 20 seconds. Results on the synthetic scenes after 1 epoch of optimization, an average of 1 minute and 20 seconds.

Ground Truth JAXNeRF [7, 26] Plenoxels

Figure 6. Synthetic, bounded scenes. Example results on the lego
and ship synthetic scenes from NeRF [26]. Please see the supple-
mentary material for more images.

Ground Truth JAXNeRF [7, 26] Plenoxels

Figure 7. Real, forward-facing scenes. Example results on the
fern and orchid forward-facing scenes from NeRF.

In Tab. 3, we consider how our method handles a dramatic
reduction in training data, from 100 views to 25 views, on the
8 synthetic scenes. We compare our method to NeRF and find
that, despite its lack of complex neural priors, by increasing
TV regularization our method can outperform NeRF even
in this limited data regime. This ablation also sheds light on
why our model performs better with higher TV regularization
on the real forward-facing scenes compared to the synthetic
scenes: the real scenes have many fewer training images,
and the stronger regularizer helps our optimization extend
smoothly to sparsely-supervised regions.

We also ablate over the resolution of our Plenoxel grid
in Tab. 4 and the rendering formula in Tab. 5. The rendering

PSNR ↑ SSIM ↑ LPIPS ↓
Ours: 100 images (low TV) 31.71 0.958 0.050
NeRF: 100 images [26] 31.01 0.947 0.081

Ours: 25 images (low TV) 26.88 0.911 0.099
Ours: 25 images (high TV) 28.25 0.932 0.078
NeRF: 25 images [26] 27.78 0.925 0.108

Table 3. Ablation over the number of views. By increasing our
TV regularization, we exceed NeRF fidelity even when the number
of training views is only a quarter of the full dataset. Results are
averaged over the 8 synthetic scenes from NeRF.

Resolution PSNR ↑ SSIM ↑ LPIPS ↓
5123 31.71 0.958 0.050
2563 30.57 0.950 0.065
1283 28.46 0.926 0.100
643 26.11 0.892 0.139
323 23.49 0.859 0.174

Table 4. Ablation over the Plenoxel grid resolution. Results are
averaged over the 8 synthetic scenes from NeRF.

Rendering Formula PSNR ↑ SSIM ↑ LPIPS ↓
Max [22], used in NeRF [26] 30.57 0.950 0.065
Neural Volumes [20] 27.54 0.906 0.201

Table 5. Comparison of different rendering formulas. We com-
pare the rendering formula from Max [22] (used in NeRF and our
main method) to the one used in Neural Volumes [20], which uses
absolute instead of relative transmittance. Results are averaged over
the 8 synthetic scenes from NeRF.

formula from Max [22] yields a substantial improvement
compared to that of Neural Volumes [20], perhaps because it
is more physically accurate (as discussed further in the sup-
plement). The supplement also includes ablations over the
learning rate schedule and optimizer demonstrating Plenoxel
optimization to be robust to these hyperparameters.

5. Discussion
We present a method for photorealistic scene modeling

and novel viewpoint rendering that produces results with
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Ground Truth NeRF++ [57] Plenoxels

Figure 8. Real, 360◦ scenes. Example results on the playground and truck 360◦ scenes from Tanks and Temples [15].

comparable fidelity to the state-of-the-art, while taking or-
ders of magnitude less time to train. Our method is also
strikingly straightforward, shedding light on the core ele-
ments that are necessary for solving 3D inverse problems: a
differentiable forward model, a continuous representation (in
our case, via trilinear interpolation), and appropriate regular-
ization. We acknowledge that the ingredients for this method
have been available for a long time, however nonlinear opti-
mization with tens of millions of variables has only recently
become accessible to the computer vision practitioner.

Limitations and Future Work. As with any underdeter-
mined inverse problem, our method is susceptible to artifacts.
Our method exhibits different artifacts than neural methods,
as shown in Fig. 9, but both methods achieve similar quality
in terms of standard metrics (as presented in Sec. 4). Future
work may be able to adjust or mitigate these remaining arti-
facts by studying different regularization priors and/or more
physically accurate differentiable rendering functions.

Although we report all of our results for each dataset with
a fixed set of hyperparameters, there is no optimal a priori
setting of the TV weight λTV . In practice better results may
be obtained by tuning this parameter on a scene-by-scene
basis, which is possible due to our fast training time. This
is expected because the scale, smoothness, and number of

Ground Truth JAXNeRF [7, 26] Plenoxels

Figure 9. Artifacts. JAXNeRF and Plenoxel models both exhibit
artifacts, but the artifacts are different, as shown here in the specu-
larities in the synthetic drums scene. Note that some artifacts are
unavoidable for any underdetermined inverse problem, but the spe-
cific artifacts vary depending on the priors induced by the model
and regularizer.

training views varies between scenes. We note that NeRF
also has hyperparameters to be set such as the length of
positional encoding, learning rate, and number of layers, and
tuning these may also increase performance on a scene-by-
scene basis.

Our method should extend naturally to support multi-
scale rendering with proper anti-aliasing through voxel cone-
tracing, similar to the modifications in Mip-NeRF [2]. An-
other easy addition is tone-mapping to account for white
balance and exposure changes, which we expect would help
especially in the real 360◦ scenes. A hierarchical data struc-

8



ture (such as an octree) may provide additional speedup
compared to our sparse array implementation, provided that
differentiable interpolation is preserved.

Since our method is two orders of magnitude faster than
NeRF, we believe that it may enable downstream applica-
tions currently bottlenecked by the performance of NeRF–for
example, multi-bounce lighting and 3D generative models
across large databases of scenes. By combining our method
with additional components such as camera optimization and
large-scale voxel hashing, it may enable a practical pipeline
for end-to-end photorealistic 3D reconstruction.
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Plenoxels: Radiance Fields without Neural Networks

Supplementary Material

A. Overview

In the supplementary material, we include additional ex-
perimental details and present results and visualizations of
further ablation studies. We also present full, per-scene quan-
titative and visual comparisons between our method and
prior work. We encourage the reader to see the video for
results of our method on a wide range of scenes.

B. Experimental Details

B.1. Implementation Details

As briefly discussed in Sec. 3.2, we use a simple data
structure which consists of a data table in addition to a dense
grid, where each cell is either NULL or a pointer into the
data table. Each entry in the data table consists of the density
value and the SH coefficients for each of the RGB color
channels. NULL cells are considered to have all 0 values.
This data structure allows for reasonably efficient trilinear
interpolation both in the forward and backward passes while
maintaining sparsity; due to the relatively large memory
requirements to store the SH coefficients, gradients, and RM-
SProp running averages, the dense pointer grid is usually
not dominant in size. Nevertheless, reading the pointers cur-
rently appears to take a significant amount of rendering time,
and optimizations are likely possible.

Our main CUDA rendering and gradient kernels simulta-
neously parallelize across rays, colors, and SH coefficients.
Each CUDA warp (32 threads) handles one ray, with threads
processing one SH coefficient each; since coefficients are
stored contiguously, this means access to global memory
is highly coalesced. The SH coefficients are combined into
colors using warp-level operations from NVIDIA CUB [23].
These features are particularly significant in the case of tri-
linear interpolation.

Note that in order to correctly perform trilinear color
interpolation, instead of using the sigmoid function to ensure
that predicted sample colors are always between 0 and 1 as
in NeRF [26], we simply clip negative color values to 0 with
a ReLU to preserve linearity as much as possible.

We use weight-based thresholding (as in PlenOctrees
[56]) for the synthetic and real, 360◦ scenes, and opacity-
based thresholding for the forward-facing scenes. The reason
for this is that some content (especially at the edges) in the
forward-facing scenes is not visible in most of the training
views, so weight-based thresholding tends to prune these
sparsely-supervised features.

We use a batch size of 5000 rays and optimize with RM-
SProp [10]. For σ we use the same delayed exponential

learning rate schedule as Mip-NeRF [2], where the expo-
nential is scaled by a learning rate of 30 (this is where the
exponential would start, if not for the delay) and decays to
0.05 at step 250000, with an initial delay period of 15000
steps. For SH we use a pure exponential decay learning rate
schedule, with an initial learning rate of 0.01 that decays to
5× 10−6 at step 250000.

The TV losses are evaluated stochastically; they are ap-
plied only to 1% of all voxels in the grid in each step. Note
that empty voxels can be selected, as their neighbors may not
be empty. In practice, for performance reasons, we always
apply the TV regularization on random contiguous segments
of voxels (in the order that the pointer grid is stored). This
is much faster to evaluate on the GPU due to locality. In all
cases, the voxel differences in the TV loss defined below
Eq. (3) is in practice normalized by the voxel resolution in
each dimension, relative to 256 (for historical reasons):

∆x((i, j, k), d) =
|Vd(i+ 1, j, k)− Vd(i, j, k)|

256/Dx
(6)

Where Dx is the grid resolution in the x dimension, and
Vd(i, j, k) is the dth value of voxel (i, j, k) (either density
or a SH coefficient). We scale ∆y,∆z analogously. Note
that the same loss is applied in NDC and to the background
model, except in the background model, the TV also wraps
around the edges of the equirectangular image. For SH,
empty grid cells and edges are considered to have the same
value as the current cell (instead of 0) for purposes of TV.

B.2. Synthetic experiments

On the synthetic scenes, we found that our method per-
forms nearly identically when TV regularization is present
only in the first stage of optimization; turning off the reg-
ularization after pruning voxels and increasing resolution
reduces our training time modestly. We suspect (see Tab. 3)
this is due to the large number of training views (100) avail-
able for these scenes as well as the low level of noise; for
the other datasets we retain TV regularization throughout
optimization.

We start at resolution 2563, prune and upsample to reso-
lution 5123 after 38400 steps (the equivalent of 3 epochs),
and optimize for a total of 128000 steps (the equivalent of
10 epochs). We prune using a weight threshold of 0.256, and
use λTV of 1× 10−5 for σ and 1× 10−3 for SH, only dur-
ing the initial 38400 steps (and then turn off regularization
after pruning and upsampling, for faster optimization).

1



B.3. Forward-facing experiments

For the forward-facing scenes we start at resolution
256× 256× 128, prune and upsample to resolution 512×
512× 128 at step 38400, prune and upsample to resolution
1408× 1156× 128 at step 76800, and optimize for a total of
128000 steps. The final grid resolution is derived from the
image resolution of the dataset, with some padding added
on each side. We prune using a σ threshold of 5, use λTV
of 5× 10−4 for σ and 5× 10−3 for SH, and use a sparsity
penalty λs of 1× 10−12 to encourage empty voxels.

While these TV parameters work well for the forward-
facing NeRF scenes, more generally, we find that some-
times it is preferrable to use λTV 5× 10−3 for density and
5× 10−2 for SH, which reduces artifacts while blurring the
scene more. This is used for some of the examples in the
video, for example the piano. In general, since scenes differ
significantly in content, camera noise, and actual scale, a
hyperparameter sweep of the TV weights can be helpful, and
using different TV values across the scenes would improve
the metrics for the NeRF scenes as well.

B.4. 360◦ experiments

For the 360◦ scenes our foreground Plenoxel grid starts
at resolution 1283; we prune and upsample to 2563, 5123,
and 6403 with 25600 steps in between each upsampling.
We optimize for a total of 102400 steps. We prune using a
weight threshold of 1.28, and use λTV of 5× 10−5 for σ and
5× 10−3 for SH for the inner grid and λTV of 1× 10−3 for
both σ and SH for the 64 background grid layers of resolution
2048× 1024. We use λs of 1× 10−11 and λβ of 1× 10−5.
For simplicity of implementation, we did not use coarse-to-
fine for the background and only use σ thresholding. We
also do not use the delayed learning rate function for the
background, opting instead to use an exponential decay to
allow the background to optimize faster than the foreground
at the beginning.

While the TV weights were fixed for these scenes, in
general, a hyperparameter sweep of the TV weights can be
helpful. For more general scenes, it is sometimes useful to
use a near-bound on the camera rays (as in NeRF) to prevent
floaters very close to the camera, or to only begin optimizing
the foreground after, say, 1000 iterations. Further sparsity
losses to encourage the weight distribution to be a delta
function may also help.

C. Ablation Studies
We visualize ablations on the synthetic lego scene in

Fig. 10. In addition to comparing nearest neighbor and tri-
linear interpolation, we also experimented with tricubic in-
terpolation, which produces a function approximation that
is both continuous (like trilinear interpolation) and smooth.
However, we found tricubic interpolation offered negligi-

LR Schedule PSNR ↑ SSIM ↑ LPIPS ↓
Exp for SH, Delayed for σ [2] 30.57 0.950 0.065
Exp for SH and σ 30.58 0.950 0.066
Exp for SH, Constant for σ 30.37 0.948 0.068
Constant for SH and σ 30.13 0.945 0.075

Table 6. Comparison of different learning rate schedules for σ
(voxel opacity) and spherical harmonics (SH), with fixed resolution
2563 and RMSProp [10]. Results are averaged over the 8 synthetic
scenes from NeRF [26]. Our method is robust to variations in
learning rate schedule.

Optimizer PSNR ↑ SSIM ↑ LPIPS ↓
RMSProp [10] for SH and σ 30.57 0.950 0.065
RMSProp for SH, SGD for σ 30.20 0.946 0.072
SGD for SH, RMSProp for σ 29.82 0.940 0.076
SGD for SH and σ 29.35 0.932 0.087

Table 7. Comparison of different optimizers for σ and SH, with
fixed resolution 2563. Results are averaged over the 8 synthetic
scenes from NeRF [26]. Our method is robust to variations in
optimizer, although there is a benefit to RMSProp particularly for
optimizing the spherical harmonic coefficients.

Regularizer PSNR ↑ SSIM ↑ LPIPS ↓
TV SH, TV σ, Sparsity 26.29 0.839 0.210
- Sparsity 26.31 0.839 0.210
- TV σ 25.25 0.807 0.226
- TV SH 25.80 0.814 0.234

Table 8. Ablation over regularization. Results are averaged over
the 8 forward-facing scenes from NeRF, which are particularly
sensitive to regularization due to the low number of training views.
We find that the sparsity regularizer is not necessary for quality,
but we retain it to reduce memory footprint. TV regularization
is essential for σ but also important for spherical harmonics, as
visualized in Fig. 3, even though this effect is not as pronounced
in the PSNR metric. Without any TV regularization (on SH or σ),
three of the eight scenes run out of memory on our GPU.

ble improvements compared to trilinear, in exchange for a
substantial increase in computation (this increase in com-
putation is why we do not include a full ablation table for
tricubic interpolation).

Tab. 6 and Tab. 7 show ablations over learning rate sched-
ule and optimizer, respectively. We find that Plenoxel opti-
mization is reasonably robust to both of these hyperparame-
ters, although there is a noticeable improvement from using
RMSProp compared to SGD, particularly for the spherical
harmonic coefficients. Note that when comparing different
learning rate schedules and optimizers, we tune the initial
learning rate separately for each row to provide the best
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(a) Trilinear, 2563 (b) Nearest, 2563 (c) Trilinear, 1283 (d) 25 Images, Low TV (e) 25 Images, High TV (f) NV Formula

Figure 10. Visual results of ablation studies on the synthetic lego scene. Trilinear interpolation at resolution 2563 is quite similar to our
full model at resolution 5123. Nearest neighbor interpolation shows clear voxel artifacts. Trilinear interpolation at lower resolution appears
less detailed. Reducing the number of training views produces visual artifacts that are mostly resolved by increasing the TV regularization.
Optimizing and rendering with the Neural Volumes [20] formula produces different visual artifacts.

results possible for each configuration.

Tab. 8 shows ablation over regularization, for the forward-
facing scenes. We find that TV regularization is important
for these scenes, likely due to their low number of training
images. Regularization on opacity has a quantitatively larger
effect than regularization on spherical harmonics, but both
are important for avoiding visual artifacts (see Fig. 3).

Tab. 5 compares the performance of Plenoxels when
trained with the rendering formula used in NeRF (originally
from Max [22]) and when trained with the rendering formula
used in Neural Volumes [20]. The Max formula is defined
in Eq. (1) and rewritten here in a slightly more convenient
format:

Ti = exp

− i−1∑
j=1

σjδj

 (7)

Ĉ(r) =

N∑
i=1

(Ti − Ti+1)ci (8)

The Neural Volumes formula is (up to optimizing in log

space):

Ti = min

1,

i−1∑
j=1

exp(−δiσi)

 (9)

Ĉ(r) =

N∑
i=1

(Ti − Ti+1)ci (10)

These formulas only differ in their definition of the trans-
mittance Ti. In particular, the Neural Volumes formula treats
αi, the fraction of the ray contributed by sample i, as a func-
tion of the opacity and sampling distance of sample i only.
In contrast, the contribution of sample i in the Max formula
depends on the opacity of sample i as well as the opacities
of all preceding samples along the ray. In essence, opacity in
the Neural Volumes formula is absolute and ray-independent
(except for clipping the total contribution to 1), whereas
opacity in the Max formula denotes the fraction of incoming
light that each sample absorbs, a ray-dependent quantity. As
we show in Tab. 5, the Max formula results in substantially
better performance; we suspect this difference is due to its
more physically-accurate modeling of transmittance.

D. Per-Scene Results
D.1. Synthetic, Bounded Scenes

Full, per-scene results for the 8 synthetic scenes from
NeRF are presented in Tab. 10 and Fig. 11. Note that the
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values for JAXNeRF are from our own rerunning with cen-
tered pixels (we ran JAXNeRF in parallel across 4 GPUs and
multiplied the times by 4 to account for this parallelization).

D.2. Real, Forward-Facing Scenes

Full, per-scene results for the 8 forward-facing scenes
from NeRF are presented in Tab. 11. Note that the values for
JAXNeRF are from our own rerunning with centered pixels
(we ran JAXNeRF in parallel across 4 GPUs and multiplied
the times by 4 to account for this parallelization).

D.3. Real, 360◦ Scenes

Full, per-scene results for the four 360◦ scenes from
Tanks and Temples [15] are presented in Tab. 9. Note that
the values for NeRF++ appear slightly different from the pa-
per; we re-evaluated the metrics independently using VGG
LPIPS and standard SSIM, from rendered images shared by
the original authors.

PSNR ↑
M60 Playground Train Truck Mean

Ours 17.93 23.03 17.97 22.67 20.40
NeRF++ [57] 18.49 22.93 17.77 22.77 20.49

SSIM ↑
M60 Playground Train Truck Mean

Ours 0.687 0.712 0.629 0.758 0.696
NeRF++ 0.650 0.672 0.558 0.712 0.648

LPIPS ↓
M60 Playground Train Truck Mean

Ours 0.439 0.435 0.443 0.364 0.420
NeRF++ 0.481 0.477 0.531 0.424 0.478

Optimization Time ↓
M60 Playground Train Truck Mean

Ours 25.5m 26.3m 29.5m 28.0m 27.3m

Table 9. Full results on 360◦ scenes.
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PSNR ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62 31.71
NV [20] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93 26.05
JAXNeRF [7, 26] 34.20 25.27 31.15 36.81 34.02 30.30 33.72 29.33 31.85

SSIM ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 0.977 0.933 0.976 0.980 0.975 0.949 0.985 0.890 0.958
NV 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784 0.893
JAXNeRF 0.975 0.929 0.970 0.978 0.970 0.955 0.983 0.868 0.954

LPIPS ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 0.031 0.067 0.026 0.037 0.028 0.057 0.015 0.134 0.049
NV 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276 0.160
JAXNeRF 0.036 0.085 0.037 0.074 0.068 0.057 0.023 0.192 0.072

Optimization Time ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 9.6m 9.8m 8.8m 12.5m 10.8m 11.0m 8.2m 18.0m 11.1m
JAXNeRF 37.8h 37.8h 37.7h 38.0h 26.0h 38.1h 37.8h 26.0h 34.9h

Table 10. Full results on synthetic scenes.
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(a) Ground Truth (b) Neural Volumes (c) JAXNeRF (d) Plenoxels

Figure 11. Synthetic scenes. We show a random view from each of the synthetic scenes, comparing the ground truth, Neural Volumes [20],
JAXNeRF [7, 26], and our Plenoxels.
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(e) Ground Truth (f) Neural Volumes (g) JAXNeRF (h) Plenoxels

Figure 11. Synthetic scenes. We show a random view from each of the synthetic scenes, comparing the ground truth, Neural Volumes [20],
JAXNeRF [7, 26], and our Plenoxels.
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PSNR ↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 25.46 27.83 31.09 27.58 21.41 20.24 30.22 26.48 26.29
LLFF [25] 28.42 22.85 19.52 29.40 18.52 25.46 24.15 24.70 24.13
JAXNeRF [7, 26] 25.20 27.80 31.57 27.70 21.10 20.37 32.81 27.12 26.71

SSIM ↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 0.832 0.862 0.885 0.857 0.760 0.687 0.937 0.890 0.839
LLFF 0.932 0.753 0.697 0.872 0.588 0.844 0.857 0.840 0.798
JAXNeRF 0.798 0.840 0.890 0.840 0.703 0.649 0.952 0.890 0.820

LPIPS ↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 0.224 0.179 0.180 0.231 0.198 0.242 0.192 0.238 0.210
LLFF 0.155 0.247 0.216 0.173 0.313 0.174 0.222 0.193 0.212
JAXNeRF 0.272 0.198 0.151 0.249 0.305 0.307 0.164 0.235 0.235

Optimization Time ↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 23.7m 22.0m 31.2m 26.3m 13.3m 23.4m 28.8m 24.8m 24.2m
JAXNeRF 38.9h 38.8h 38.6h 38.7h 38.8h 38.7h 39.1h 38.6h 38.8h

Table 11. Full results on forward-facing scenes.
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(a) Ground Truth (b) JAXNeRF (c) Plenoxels

Figure 12. Forward-facing scenes. We show a random view from each of the forward-facing scenes, comparing the ground truth,
JAXNeRF [7, 26], and our Plenoxels.
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(d) Ground Truth (e) JAXNeRF (f) Plenoxels

Figure 12. Forward-facing scenes. We show a random view from each of the forward-facing scenes, comparing the ground truth,
JAXNeRF [7, 26], and our Plenoxels. Note that these two methods have different behaviors in unsupervised regions (e.g. the bottom right in
the orchids view): JAXNeRF fills in plausible textures whereas Plenoxels default to gray.
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(a) Ground Truth (b) NeRF++ (c) Plenoxels

Figure 13. 360◦ scenes. We show a random view from each of the Tanks and Temples scenes, comparing the ground truth, NeRF++ [57],
and our Plenoxels. We include two random views each for the M60 and train scenes, since the playground and truck scenes were shown in
the main text.
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