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Abstract

Despite their status as foundational concepts in software engineering, many software
design decision-making principles and heuristics, such asinformation hiding and the de-
laying of design decisions, are still idiosyncratic, ad hoc, poorly integrated and not clearly
based on any sound theory. In this paper, we develop an economics-based approach to
providing a firmer foundation for software design decision-making heuristics. We start
with the premise is that many software design decisions are essentially about when if ever
to make irreversible but delayable investments of valuableresources in software assets of
uncertain value. This formulation reveals an analogy between software design decisions
andreal options,which are capital investment analogs of financial call options, for which
there is a well-developed theory and body of knowledge. In particular, the theory of real
options captures precisely the idea that there can be significant value in having flexibility
to wait for better information before committing valuable resources to develop or obtain
assets. The options-theoretic nature of many software design decisions allows us to bring
option theory to bear on an analysis and refinement of critical, widely employed software
design decision-making heuristics.
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1 Introduction

In design situations of significant complexity, the utility of precise numericaland analytical
approaches can break down, leaving engineers largely dependent on heuristic guidelines[29].
Heuristics are essential intellectual tools of the system architect. One problem with heuris-
tics, however, is that it's hard to evaluate their validity owing to the informality with which
they are stated. Heuristics such as “Simplify, simplify, simplify,” might require little valida-
tion. In other cases, however, validity is not so clear; and in such cases, we should seek an
understanding of the rational basis for our belief in the validity of our heuristic guidelines.

Should a software designer “Always write a specification?” “Always use information hid-
ing?” “Delay design decisions until they are forced, so as to have the best possible information
at the time they are made?” In general, we need to distinguish good heuristics from inadequate
ones, and to understand the ranges within which heuristics are valid.

Because software design problems are complex, software engineers tend to dependheavily
on a variety of critical and widely accepted design heuristics. Key concepts include informa-
tion hiding [26] (“hide design decisions that are likely to change”); program families [25]
(“delay making design decisions that distinguish sub-families”); spiral software development
processes [4] (“attack the greatest risks first”); delaying decisions [16,36] (“each design de-
cision locks in upstream decisions and constrains downstream decisions”); prototyping [4]
(“spend a little early to determine the best course of action”); iterative enhancement [1] (“de-
velop a flexible, operational system early then add capabilities incrementally”); and reuse [19]
(“spend extra to design assets so that you can amortize their costs over multiple uses”).

Unfortunately, many such heuristics at the heart of software design doctrine and practice
are idiosyncratic, poorly integrated, not clearly based on or justified by any soundtheory, and,
we suspect, suboptimal in many situations. Concepts such as information hiding, while of
the utmost importance, are presented in hard-to understand terms that obscure therational
justifications for such concepts.

This state of affairs has many negative consequences. It makes it unnecessarily hard for
software designers to reason effectively about design; for teachers to teach the decision-
making criteria of the field as a coherent, well founded body of knowledge; for students to
truly grasp these criteria; and for managers, who think in terms of wealthmaximization over
time, to communicate effectively with engineers, who reason in termsof information hiding,
delaying of design decisions, secrets of modules, and the like.

Worse yet, the lack of a rational basis for heuristics denies us a satisfying intellectual grasp
of the deep connections among critical software design concepts. Does a common structure
underlie the ideas of program families, information hiding, delaying of design decisions and
architecture, for example? Not having a good answer to such a question ultimatelyleads to
unnecessary problems in cost, quality, timeliness and pain involved in engineering software.

Is software design an inherently opaque subject that demands uniquely strange, difficult
and vague concepts? We suspect that the answer is no, and that the opacity of current software
design doctrines is largely attributable to shortcomings in the theoretical foundations of our
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decision-making heuristics—insofar as there is any real theory at all.
One approach to providing a sound basis for decision-making is to appeal to economics,

as advocated notably by Boehm [3]. Such an approach recognizes that software design deci-
sions concern the expenditure of valuable resources (time, money, memory, etc.)in the face of
uncertainty over future payoffs. The economics approach seeks to make decisions amenable
to analysis using techniques from the microeconomics area ofdecision-making under uncer-
tainty.

It is clear that an economics approach to software design decisions is plausible. Design is
well understood to be an anticipatory activity that involves projections of an uncertain future
and consideration of resource expenditures at every step. For example, the generalarea of
software architecture focuses intensely on the question of the ways in which a system should
be designed so as to accommodate “likely change” at an acceptable cost [30].

Consider in particular the information hiding criterion for designing the modular structure
of software. The idea is, again, to invest in modules that hide aspects of a system that are
viewed as likely to change independently [26, 28]. The costs of a modularization decision
includes the cost of designing, implementing, validating, verifying and documenting an inter-
face; the lost opportunity to use the secret of a module directly; and the downstreamcost of
program restructuring if the future turns out to be other than as anticipated. Benefits include
reduced future evolution costs; lower project costs owing to proper abstraction and decompo-
sition; the flexibility to use a module in multiple systems; and the flexibility to produce related
systems by varying design decisions independently. Modularization decisions can thusbe
viewed as decisions to invest resources in the face of uncertainty over what changes are likely,
and thus over the future profitability or payoffs of the investment decisions.

In this paper we present the theory of real options as a tool for analyzing and evaluating
such critical software design decision-making heuristics as information hiding and delaying
of design decisions. The idea is not that we should calculate options values in analyzing
specific design decisions, although that might be useful in some cases. Rather, weuse options
concepts asintellectual toolsto help us to understand, evaluate, and improve the heuristics
that we employ in making design decisions.

The justification for this approach lies in a two-step analogy between financial options and
design decisions. First, we will argue that many software design decisions can be viewed as as
decisions about when if ever to make irreversible but delayable capital investments in assets
of uncertain value. Second, we appeal to an analogy between capital investment decisions
and financial call options—an analogy that has been the focus of important recent research in
finance and capital investment [8, 9, 10, 13, 22, 34].

Briefly, a call option confers upon its holder the right but not the obligation to purchase as-
sets (such as stocks) at set prices for certain periods of time. The capital investment manager,
and we now claim the software designer, is in an analogous situation of having the preroga-
tive but not the obligation to invest resources in “real” assets, such as power plants or user's
manuals.
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To the extent that the analogies hold, our approach allows us to draw upon the well de-
veloped theory and body of knowledge about options in reasoning about software decision-
making heuristics. By formulating software design decision-making in financial terms gen-
erally, and in terms of real options in particular, we believe that we makeprogress toward
establishing rational foundations for understanding, improving and perhaps even generating
important software design heuristics. We hope that this line of research might ultimately help
us rationalize our discourse on software design by showing that important heuristics can be
seen as manifestations of a common underlying options-theoretic (or other advanced financial)
structure. In this paper we shall begin by presenting the basic concepts in options-theoretic
terms.

To the best of our knowledge, we are the first to connect real options to the problem of
software design decision-making. One of the authors presented an earlier paper outlining the
basic idea at the 1996 Second International Software Architecture Workshop [32]. Ourwork
also appears to be distinguished in two additional ways. First, we emphasize mathematical
rigor in developing our arguments. Second, seek not so much practical, finance-basedtools
for direct application in project management, but rather theoretical explanations and tools
for reasoning about the highly abstracted heuristics on which software designers depend so
heavily.

The rest of this paper is organized as follows. Section 2 discusses the net present value
(NPV) approach and its shortcomings. Section 3 provides an informal introduction to the area
of financial call options and how they relate to software design decisions. Section 4 provides
the requisite mathematical background for the remainder of the paper. Section 5 formally de-
fines some basic options terminology, and also presents known results on the optimal exercise
of call options. Section 6 describes the basic idea of real option theory and how to relate it
to software design decisions. Section 7 presents an example showing, in more detail, how
the real options approach can be applied in reasoning about a fictional problem of deciding
when if ever to restructure a software system to improve its information hiding characteristics.
Section 8 illustrates the theory of the preceding section by means of a simple numerical exam-
ple. Section 9 presents a number of qualitative design heuristics and insights derived from the
options view of software design. Section 10 ends with a summary and concluding thoughts.

2 Net Present Value

The traditional economic approach to analyzing software engineering decisions focuses on
so-callednet present value(NPV). The financial aspects of Boehm's seminal article and book
on software engineering economics [3], emphasize NPV, for example. Boehm does address
uncertainty over the present state of nature using the concept of the expected valueof infor-
mation, but he does not address strategies for responding to uncertainty about the future.The
need to reason about and respond to uncertain futures is critical to the software designer, and
is the dimension of uncertainty that options theory addresses directly.
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More recently Favaro has emphasized the key role that financial analysis canplay in soft-
ware engineering—in the area of software reuse, in particular [11]. Favarorightfully criticizes
analysis techniques that have been used to reason about investments in reuse butthat are
known to have serious shortcomings in relation to the NPV approach [5]. Favarothen settles
on NPV as the most appropriate investment analysis technique.

Under the traditional NPV approach, you analyze an investment decision by first calculat-
ing the present value of the income stream that the investment will generate.If future income
is uncertain, you compute the expected present value, which weights the possibilities by their
estimated likelihoods. Next you calculate the expected present value of the stream of expen-
ditures required to implement the decision. The NPV is the first quantity minus thesecond:
the value of the expected income minus the expected outflow. You then employ the traditional
NPV rule taught to every business student: invest if and only if the NPV is positive [5].

A key idea behind the NPV approach is that benefits received in the future should be
discounted according to an assumed interest rate that generally depends on both macroeco-
nomic factors and on the riskiness of the proposed project. By discounting, we mean thata
dollar that is to be received tomorrow is worth less than a dollar held today.The reason is
that, with a non-zero interest rate, you could invest less than a dollar todayto get a dollar
tomorrow. Tomorrow's dollar is worth today what you would have to invest today tohave the
dollar tomorrow. A dollar received in two days is worth even less today because, with daily
compounding, even less would have to be invested today to yield that dollar in two days.

Unfortunately, the simple NPV rule is often suboptimal, because it is founded on a faulty
assumption. It views the investor's (or software engineer's) decision as being now-or-never, in
the sense that if the investment is not made now, the opportunity to invest is lostforever. If the
only possibilities available to the investor are to invest now or investnever, then she is justified
in following the traditional NPV rule. However, many investment decisions, including many
of those required to effect software design decisions, can be delayed without forgoing the
prerogative to invest later should conditions turn out to be favorable.

A decision not to write a user's manual today, for example, can be reversed tomorrow. In
the face of uncertainty over the future value of such a document, one might decide to delay
investing valuable resources in it. However, should it become clear thatthe benefits of having
the manual are likely to outweigh the cost to produce it, then one could reverse the decision to
delay investing, and invest the resources needed to produce the document.

Indeed, delaying software design decisions has long been recognized as an important soft-
ware design strategy [16]. The theory of options suggests why this might be so. Unlike a
decision to delay investing, a decision to invest is irreversible. Once time, money and mate-
rials are invested in such a document, those resources cannot be recovered byreversing the
decision to invest. The manual might have some scrap value, but the decision to scrap it isn' t
a decision to reverse the investment, but rather a subsequent decision to sell off the acquired
asset at its market value, whatever that might be. In many software design cases, the scrap
value of a software artifact is essentially zero. The non-reversibility of decisions to invest in

5



software assets is quite profound.
This asymmetry in the reversibility of decisions to invest and to delay investing brings

into play several strategies beyond traditional NPV that should be considered inattempting to
make optimal decisions, and which shed light on the situation of uncertainty about the future
in which the software designer often finds herself. Specifically, we see that an investor's or
designer's decisions can be madecontingenton what kind of future actually unfolds. For
instance, an investor can wait for a month, and decide not to invest if the next month reveals
information indicating that the likely payoff would be negative. Or perhaps after amonth the
uncertainty over the payoff is less, even if the expected payoff is the same; and that might be
enough to change the wary investor's mind.

The theory of options shows that this type of wait-and-see strategy can have a larger ex-
pected payoff than investing right away even when discounted to the present time. Even when
the NPV rule indicates that an investment has a positive expected value, itcan be suboptimal
to invest right away. The basic problem is that the NPV approach doesn' t properly account
for the combination of the factors of uncertainty, irreversibility and one's ability to postpone
decision-making.

Of course, if the resources invested in an asset can be recovered in full if conditions turn
sour, then a decision to invest is reversible, and in this case it would suffice to view investing as
a now-or-never decision: Invest if there's a reasonable chance of a good pay off, and pull your
money out later if things don' t work out. However, as we noted, expenditures made in capital
investments, and in implementing software design decisions, usually cannot berecovered.
Investments in software design decisions are thus generallyirreversiblebut often delayable.

Similarly, if the future is certain, then NPV is an adequate decision rule. If it is certain that
an investment will produce a profit, then there is no sense in not investing. Conversely if an
investment is a sure loser, no rational decision maker would invest. The problem is that when
the future is uncertain, and when in particular there is a chance that an investment will lose
(even if the expected return is positive), then it can pay to wait for better information before
you invest.

Of course a decision to delay investing can itself have costs. If a user's manual would
provide benefits today—e.g., for test case design—then to delay investing is to forgo those
benefits. Delay can have an opportunity cost, too. The optimal decision strategy balances the
value of waiting for more information against the cost of not having assets now. Clearly, naive
software design heuristics such as “always write a manual” can be woefullysuboptimal.

Rather than viewing investments under uncertainty as now-or-never propositions oras
being reversible, the approach we emphasize in this paper stresses the view that companies and
software designers alike haveopportunitiesto invest, and that they must decide how to create
and exploit such opportunities optimally. We view optimal design decision-making as akin to
optimal timing of decisions to exerciseoptions—i.e., to exploit investment opportunities.

The success of the “real options” view of capital investment is based on the important
observation that investment opportunities are analogous to financialcall options.A call option
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confers upon its holder the right but not the obligation to purchase an asset at a set costfor
a period of time. Call options are options to purchase financial assets such as stocks. The
valuation and optimal exercise of such financial options has been an active area of research in
finance over the past two decades. More recently, researchers have been applying results from
the area of options to capital investment problems, and this has lead to the new field of real
options theory.

The theory of real options is based on a strong analogy between call options and capital
investment opportunities. The analogy is that when a company makes an irreversible capital
investment, in effect it “exercises” a call option. That is, it exercises its prerogative to invest
resources to obtain a real asset. To make the analogy explicit, such investment opportunities
are called “real options.” A real option can be seen as an opportunity to in a real, rather than
a financial, asset, and as the flexibility that a manager has to delay deciding whether or not to
invest [31]. Thus a company's capital investment problem can be viewed as one ofobtaining
and optimally exercising real options.

The central idea in this paper, then, is to view software design decision-makingas capital
investment decision-making and to better understand design by employing concepts from the
theory of real options—a theory that in turn borrows heavily from the theory of financialcall
options. We present this work as a step toward theoretical foundations for software design
heuristics based on new concepts from advanced finance. We do not believe that developing
such a foundation will make software design easy. Estimating the relevant parameters of actual
design situations will remain hard or impossible in real projects. Even with plausible estimates
of future benefits and likelihoods, computational complexity and other barriers might prevent
instrumental application of such theories. We are not proposing a silver bullet.

Indeed, we do not even intend primarily to present options theory as an analytical tool—
although it might be useful in that mode in some cases—but rather an intellectual tool to help
us to think better about complex design situations. We see a number of benefits from this
line of research. First, like the Navier-Stokes fluid flow equations, a good theoryis intellec-
tually satisfying and useful even if it can' t always be applied directly. Second, we suspect
that many software designers are operating with design rules of thumb that aredemonstrably
suboptimal, and that basing heuristics on well developed theories can help designers to tune
and better understand their heuristics. Third, giving software engineers knowledgeof key
concepts in finance in the form of financially-based heuristics could help to bridge aserious
communication gap between software engineers and capital investment managers.

In this paper we make and present evidence for three claims. First, many software design
decisions amount to decisions about capital investment under uncertainty, irreversibility and
delayability. Second, we can understand key software design principles as ad hoc and id-
iosyncratic rules that implicitly reflect the capital investment character of software design and
that in many cases tacitly embody real-options-based strategies. Third,appealing to advanced
concepts in finance appears to offer some promise to help us to simplify, unify, rationalize,
generate, and improve important software design decision-making heuristics.
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3 Informal Overview of the Options Approach

In this section we show informally by means of a simple example the principal ideas behind
the options approach to software design decisions. A more complete, formal treatment appears
in the remaining sections.

Let us suppose that an engineer is considering remodularizing a large software system to
impose a new information hiding interface (c.f., Griswold [15]). Such an interface is intended
to hide a design decision, or “secret,” that is judged likely to change and that othermodules
needn' t “know” about. The expected benefit of such an information hiding approach is that it
keeps the cost of change down by limiting dependences on aspects of a system that are likely
to change.

Let us estimate that restructuring will cost 1600 dollars. Hereafter we express all resource
figures in dollars. Since this is a costly investment, the engineer must ponder carefully the
potential benefits from the new design before going ahead with it. We formulate the problem
as having to decide when if ever to perform the restructuring. The decision is amenable to
an options analysis because, like many software design decisions, it is characterized by the
combination of uncertainty about future outcomes, irreversibility, and delayability.

First, the benefits of restructuring are uncertain, depending on when or whether the an-
ticipated requirements changes actually materialize. Second, a decisionto invest would be
irreversible: The expense incurred in restructuring the system would be unrecoverable. One
could revert to the old system, but the money spent restructuring would be lost. Third, the de-
signer is not forced to make a decision immediately, but has flexibility to postpone deciding,
hoping to make a better decision later.

The nature of the uncertainty about the future is critical in this case. If the designer knew
for certain exactly how much cost-savings the information hiding interface would yield, then
her problem would be simple: Restructure if and only if the future profits discounted tothe
present time exceeds the cost of 1600. However, the future profit stream from restructur-
ing could depend upon uncertain changes in usage patterns, new hardware, other changes in
technology or markets, etc.

Thus the designer might be left with no more than a model of how the future profit stream
depends on events that might or might not occur. In this case, at any given time, based on
estimates of the lifelihoods of and benefits associated with various outcomes,an expected
valueof the future profit stream discounted to the present time can be computed. For brevity
we refer to this expected discounted value as theexpected benefitof a decision to invest at a
given time.

Let us consider a particularly simple model. Suppose that the expected benefit of restruc-
turing immediately is 2200. Furthermore, suppose that the benefit of restructuring one month
from now is either 3300 or 1100, but that the outcome depends on how certain events turn out
between now and then. After one month, the actual outcome will be known; but suppose that
at present we can only estimate that each outcome has a probability of occurring of0.5. Also,
let us assume a discounting factor of 1.1 per month. That is, 1.1 dollars a month from noware
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worth one dollar today.
A standard software engineering approach to this decision problem would use the tradi-

tional NPV rule: If the NPV—the expected benefit at the present time minus the expected
cost—is positive then invest, otherwise do not. In our example, the cost to invest is 1600, and
the expected benefit at the present time is 2200, so the NPV is2200 � 1600 = 600. The con-
clusion from the NPV rule would thus be to restructure immediately for an expected payoff of600.

Is that the best policy? We' ll see that it isn' t. The NPV rule views the investment problem
as a now-or-never decision. If there were no possibility of delaying the decision,then the
NPV rule would be justified. However, as we said, the engineer has the flexibility to postpone
deciding. If she invests today, she runs the risk of losing money if the unfavorable scenario
emerges. Instead, she can wait a month and undertake the restructuring only if thesituation
turns out to be the one in which the benefit is 3300 rather than 1100. Interestingly, the NPV of
this strategyat the present timeis significantly greater than the NPV of investing immediately,1
at (0:5)(3300=1:1 � 1600=1:1) = 773:

This formula represents the idea that the cost to invest in a month is the samein nominal
dollars as it is today (1600), but that the value of those dollars is less by a factor reflecting
an interest rate of 10% (1.1); and that in a month we stand even odds of being able to pay
1600 for an asset worth 3300 discounted dollars. If the benefit turns out to be 1100 rather than
3300, we wouldn' t invest, because to do so would surely lose money. Because a decision to
invest today would be irreversible, and because the future value of the investment is uncertain
and might be less than the cost, and, finally, because the designer has the flexibilityto wait,
waiting is a better strategy.

To explain in more depth what options have to do with this problem, we need to introduce
some basic options concepts. An Americancall option (on a stock) is a financial contract
between the option writer and the option holder that provides the holder the right but not the
obligation to acquire a share of stock from the writer at a certain priceL, called thestrike
price, by a certain date. If the option holder decides to use the option to buy a share of stock
from the writer at some time, she is said toexercisethe option. By exercising the option at
time t, the holder acquires an asset worthSt, and, to acquire this asset, she pays the exercise
costL. The cost to exercise isL and the expected benefit isSt. (The price of a stock reflects an
expectation about the future value of ownership in the issuing company.) Note that the option
holder is not obligated to exercise the option even ifSt > L; she may wait until a time of her
choosing, even possibly letting the option expire without exercising it.

Clearly, a rational option holder will exercise at a timet only if the market priceSt of the
stock exceeds the strike priceL of the option. Then the holder can make a profit (or “payoff”)1Note that although the term NPV is used to refer to the present value of any strategy, contingent or not, the
NPV rule found in corporate finance textbooks considers only the strategy of investing right away. Thus when
we refer to the “traditional NPV rule”, we mean the rule that only analyzes the NPV of immediate investment.
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of St � L by exercising the option and immediately selling the acquired stock at the market
price. Thus, at any timet, the potential payoff from exercising the option ismax(St � L; 0),
where the zero represents the decision not to exercise the option. We denote this quantity by(St � L)+.

The option holder thus faces the question of when if ever to exercise the option in order
to maximize the expected payoff discounted to the present time. This situation that appears to
be strongly analogous to the design decision-making problem faced by the software engineer.
The cost of 1600 to restructure is analogous to the strike priceL of a call option on the new
interface. By paying this exercise cost at timet, the engineer will acquire an asset worthSt,
which is the expected present value of the future profit stream (e.g., reduced future costs) from
restructuring. If we let subscripts denote time in months, thenS0 = 2200, andS1 is either
3300 or 1100, each with probabilityp = 0:5. Thus, the expected payoff from investing in
restructuring at the current time isS0 � L = 600. A month from now, ifS1 = 3300, then
the payoff is3300 � 1600 = 1700, and if S1 = 1100 the engineer would not invest, for a
payoff of 0. Thus, the engineer can be viewed as holding a real option: She has the right
but no obligation to acquire the expected benefit ofSt by investingL in restructuring at timet. Deciding the best time to invest is analogous to deciding the best time to exercise the real
option.

Let us now consider two possible exercise strategies. Since there is no uncertainty after
time 1, these are the only two alternative that we need to consider. Strategy 1 is to exercise
immediately, i.e., at time 0. The payoff is(S0 � L)+ = 2200 � 1600 = 600. Strategy 2 is to
wait one month, and exercise only if the benefit turns out to be 3300. The expected present
value of the payoff from this strategy is, of course,(0:5=1:1) [3300 � 1600] = 773:

The analogy between options and investment decisions yields new and useful software
engineering insights. Because past economics-based approaches to software engineering have
focused on traditional NPV analysis, they have tended to ignore the need to respond strate-
gically to uncertainty about the future, and they have ignored in particular the value of being
able to wait for better information. Options analysis makes this value explicit. In particular,
one can define the valueVt of an option at any timet rigorously as the expected present value
of future payoffs under the optimal exercise strategy. In our example, the valueV0 is 773 since
this is the expected payoff from the best exercise strategy of the two available.

This value can be thought of as the value of having the flexibility to wait. The ability
to change one's mind by reversing the decision not to invest, and hence the value of this
flexibility, is lost when the option is exercised. In a sense, the option valueVt represents the
opportunity costof exercising at timet. It can be shown rigorously that for an American call
option, the optimal exercise rule is to exercise when the payoff,(St � L)+, is equal to (or
greater than) the valueVt, i.e., whenSt = L + Vt. This rule says that it is optimal to invest
when the benefitSt exceeds the direct costL plus the opportunity costVt.
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This example illustrates how real option theory can help quantify the value of waiting
before embarking on an expensive project, such as a major software restructuring. As we will
see, the valueVt can be computed easily under simple models of future uncertainty.

Beyond correcting a shortcoming in the NPV approach, the real options approach has
the advantage of capturing essential aspects of software design decision-makingin a general
sense. We are continually faced with uncertain futures, with opportunities to invest, with the
right to delay investing, and with costs of both investing and of not doing so.

Having identified the analogy between software design decisions and irreversible capital
investments under uncertainty suggests that we use the well-developed body of knowledge and
theory of real options to help illuminate software design decision-making heuristics. More-
over, if the analogy between software design decision making and real options isjustified, and
if the heuristics work, then the heuristics must at least approximate underlying options-based
strategies. Making the underlying structure explicit promises intellectual and perhaps even
analytical benefits.

4 Mathematical Background

Before describing options and their connection to investment problems more formally, we
need some mathematical vocabulary. In much of the following discussion, certain tedious
technical conditions and definitions will be omitted.

For simplicity of exposition, we will model future uncertainty by means of a discrete
event treeof finite depthN , whereN represents the maximum number of future time steps
(e.g. months, years, etc) that we wish to model. We will often takeN to be so large that we
can treat it as essentially infinite. Each node in the tree represents a state of the world. The
root node is considered to be at depth 0 and represents the present time, i.e., time 0. A node
at depthk represents a state of the world at timek; its children are the possible next states at
time k + 1. A typical path in this tree from the root to a leaf (i.e. from time0 to timeN ) is
denoted by the letters� or !. We write!(k) to denote the prefix of! consisting of the states
from time 0 to timek; !(0) represents the empty path. The collection of tree paths! is called
thesample space
. For our purposes arandom variable Z is a mapping (or function) that
associates with each! 2 
 a real numberZ(!). A randomprocessis a sequence of random
variables such asfZngNn=0, which we will sometimes denote simply byZn.

As an illustrative example, it is useful to have the following simple event tree, called the
binomial tree, in mind. Imagine we toss a coinN times. Each non-leaf node in this tree has
two children. If we imagine the tree branching left to right, each of the2N paths represents a
particular sequence of coin-toss outcomes. On any path!, for k = 1; : : : ; N , thek' th branch
is an up-branch if thek' th coin-toss comes up heads (H), and it is a down-branch if it comes
up tails (T ). For future reference we define the following random variables on this tree: Fork = 1; 2; : : : ; N , we defineXk = 1, if the kth coin-toss is aH andXk = �1 otherwise. We
refer toXk as therandom walk process. In fact,Xk can be seen as representing a particle
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that starts at the origin and performs a random walk on thex axis: at timek it moves 1 unit
to the right ifXk = 1 and 1 unit to the left otherwise. Thepositionof the particle at timek is
given by the random variableYk defined byY0 = 0, andYk = kXi=1Xi:

With each branch in an event tree, we associate a probability, so that thesum of the prob-
abilities of the branches emanating from a given node is 1. For instance if we have afair coin
in the coin-toss example above, the probability of each branch is 0.5. For anyk, and any path!, the probability of thek-prefix!(k), denotedP(!(k)), is computed in the obvious way: Mul-
tiply the probabilities of thek branches in!(k). We define the probabilityP(!) of the entire
path! in the same way. Theexpectationof a random variableX, denotedE(X), is defined
as

E(X) = X!2
X(!)P(!): (1)

We will need to use the generalized random variableFk, defined as follows. For any path! 2 
, Fk(!) = !(k). In other words, the functionFk associates with any path! 2 

its k-prefix!(k). It will be useful to think ofFk as representing the “information up to timek”. ThusFk represents a “state of the world” at timek. A random variableX is said to beFk-measurableif for any path! 2 
, X(!) only depends on!(k). More precisely,X isFk-measurable if for any pair of paths!; � 2 
, !(k) = �(k) implies thatX(!) = X(�). For
instance in the coin-toss example, if the random variableHk represents the number of heads
up to timek, thenHk isFk-measurable, fork = 1; 2; : : : ; N . Similarly, the random variableYk (the number of heads minus the number of tails by timek) is Fk-measurable. A random
processfXkgNk=0 is said to beadaptedif for k = 0; 1; 2; : : : ; N , Xk isFk-measurable.

The concept of conditional expectation is an important one for this paper. Let us imagine
we are in a particular state of the world at timek, represented by the value of the random
variableFk. In other words, we are on some path! and we knowFk(!) = !(k). Now suppose
we want to compute the expectation of some random variableX giventhat we are in stateFk.
Clearly this expectation will in general be different fromEX, and will depend on!(k). For
example, in our coin toss example, supposeX is the random variableYn. If !(k) consists
only of heads then the expectation ofYn given !(k) will be higher than if!(k) contained
only tails. We compute the expectation ofX given!(k), in a manner similar to expression
(1): The difference is that we take the weighted sum ofX(�) only over paths� such that�(k) = !(k), and we only weight each termX(�) with the product of the probabilities of the
branches of� that are takenafter time k. This probability-product is simplyP(�)=P(!(k)).
Then theconditional expectationof X givenFk is denotedE(XjFk) and is defined as the
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(Fk-measurable) random variable that maps any path! 2 
 toP �2
�(k)=!(k) P(�)X(�)
P(!(k)) ;

which is just a form of the familiar Baye's rule. The conditional expectationE(XjFk) can
be thought of as the expectation ofX given that we have all the information up to timek, or
given the state of the world at timek.

For a random variableX, it is customary to writefX = xg to denote the set of paths!
such thatX(!) = x. For any set of pathsA, IA is a random variable called theindicator
function for A, and is defined asIA(!) = 8<:1 if ! 2 A,0 otherwise.

A stopping time � is a random variable taking integral values in the range[0; N ], such that
for eachk = 0; 1; : : : ; N , If�=kg is Fk-measurable. In the coin-toss tree, an example of a
stopping time is� (!) = 8<:minfk � 0 : !(k) contains 3 Headsg if such ak exists,N otherwise.

This stopping time can be viewed as specifying the following rule: stop when the coin has
landed heads 3 times. Note that if we happen to stop at timek on a path!, i.e.,� (!) = k, then
for anypath� with �(k) = !(k), we have� (�) = k. Thus a stopping time is a non-clairvoyant
decision rule of when to stop, and in this sense models real-world decisions thatmust be made
in the absence of information about the future. We remark that “stopping” is just a convenient
metaphor that could represent any action for which we are studying decision rules.

5 Financial Options

We now describe some basic concepts in option theory. For further details we refer the reader
to Hull's introductory text [18]. For a rigorous treatment, consult Merton's seminal work [23].

The simplest kinds of options are call options. AnAmerican call option on a certain
stock is a financial contract with the following features: it gives the holderof the contract the
right but not the obligation to buy a share of the stock at a fixed price called thestrike (or
exercise) priceL from the writer (seller) of the contract, on or before a certainexpiration
date ofT time units. The holder thus has the “option” of deciding whether or not to exercise
the contract, i.e., demand a share of stock from the contract writer at the strike priceL. This
is why the contract is called an option. When the option is exercised or the option expires, the
option ceases to exist. Thus option exercise is irreversible.
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The variable underlying the option is the price per share of the stock specified in thecon-
tract (hereafter the “stock price”). It is common in finance to model stockprices as continuous-
time stochastic processes that follow definite trends that are disturbed by Brownian motion. A
Brownian motion process is commonly used in physics to represent the motion of a particle
that is subject to a large number of molecular shocks and that might also be subject toforces
exerted by a field in which the particle is embedded. The field accounts for the overall trend;
the Brownian motion for a superimposed uncertainty.

This continuous-time process can be approximated in a rigorous sense by a discrete-time
process called thebinomial model [7], defined as follows. The stock price process can be
visualized in terms of the binomial tree introduced in the previous section. The life T of the
option is divided intoN time steps of length�t = T=N , and timek in this discrete model
corresponds to continuous-timek�t. The stock price at timek isSk, so thatS0 is non-random,
andSk for k > 0 is random. At each time step, the stock price either moves up by a factoru or
down by a factor1=u. In terms of coin-tossing, we can associate an up-tick of the stock price
with the coin landingH, and a down-tick with the coin landingT . In terms of the random
variableYk introduced earlier (the number of heads minus the number of tails by timek) , the
stock price processSk is given bySk = S0uYk ; k = 0; 1; 2; : : : ; n:
The probability of an up-tick isp; the probability of a down-tick isq = 1�p. When parametersp andu are chosen appropriately, it can be shown that the binomial model for the stock price
approaches the above continuous-time model asN!1 [7].

In order to discount future cash flows to the present time, we will need to assume that
money can be borrowed or lent (for example, via a bank or government bond) at a risk-free
interest rate ofr. Thus a dollar lent or borrowed at discrete timek is worthR = 1+ r dollar at
timek+1. It is common to refer toR as adiscount factor since a dollar at timek, discounted
to the present time (i.e. time 0) is worth1=Rk.

Now let us return to the description of the American call option in terms of the binomial
stock-price model. It is clear that the holder should not exercise the option at timek � N ifSk � L. On the other hand, ifSk > L, the holder might but is not obligated to exercise the
option; and if she does, the option writer is obligated to sell her a share of stock atthe strike
priceL. The holder could then immediately sell the share in the market atSk, and make a
profit of Sk � L. Thus the profit that can be realized from an American call option at timek
is max(Sk � L; 0), which we refer to as thepayoff Gk from the option. Again, for any real
numberx it is standard notation to writex+ for maxfx; 0g, so we can write the payoff as:Gk = (Sk � L)+: (2)

Since the option holder never takes a loss from holding an option, it has a value for the holder
if there is any chance that it might ever be exercised for a profit. It is therefore not surprising
that the holder must pay a certain price to the seller for owning the option. Options have value,
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and trillions of dollars worth of this and many other kinds of options are traded daily in world
financial exchanges.

What is the best exercise strategy for the holder of an American call option if she is still
holding it at timek? As mentioned in the last section, any non-clairvoyant exercise strategy
can be described by a stopping time� . For instance the strategy of exercising immediately
(at timek) is defined by the constant stopping time� = k. As another example, the strategy:
“exercise when the stock price exceeds a certain threshold�”, is described by the stopping
time � = min(fNg [ fm 2 [k;N ] : Sm � �g):

If the holder of the option exercises immediately, she will obtain a payoff(Sk � L)+. If
she exercises at some future timem > k, the payoff would be(Sm � L)+, which is worth(Sm � L)+=Rm�k at timek. Depending on the value ofSm, this could be smaller or bigger
than the payoff(Sk � L)+ from immediate exercise. The stock priceSm at the future timem
is of course uncertain and cannot be predicted.

For a given exercise strategy (stopping time)� � k, the expected present valueV (�)k
can be computed as follows. The payoff upon exercise at time� is (S� � L)+, which is worth(S��L)+Rk�� at timek. Therefore the expected present value of the payoff from this exercise
strategy, given the information up to timek isV (�)k = E

�(S� � L)+Rk�� ����Fk� ; � � k:
Our option holder would of course want to choose� so that this expectation is maximized. We
denote this maximum byVk: Vk = max��k V (�)k : (3)

Thus the valueVk, which we loosely refer to as the “value of the option at timek”, is the
best expected present value at timek realizable over all possible exercise strategies. We note
in passing that in option pricing theory, the “fair value,” or fair trading price, of an option is
defined by assuming the absence of arbitrage. That is, the fair value of the option isthe value
at which it can be traded so that there are no opportunities for unlimited riskless profit.

More specifically, fair value is defined as the value of a dynamically updated portfolio that
replicates the random fluctuation of the option payoffGk. The replicating portfolio consists
of the underlying asset, namely the stock, and risk-free bonds. It turns out that the arbitrage-
free fair value of an American call option is defined just asVk above, but under a specific
artificial probability measure called the risk-neutral measure that is notnecessarily the “actual”
probability measure. However in the case of real options, as we will see, the underlying asset,
which represents expected future profits, only exists as a result of exercising the option, and
is not traded independently. This makes the option-replication approach to valuationless
compelling for real options. Also, since real options themselves are not traded either, we
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are not so much concerned with their fair value, as with how to exercise them optimally—i.e.,
with maximizing the expected discounted payoff under the actual probability measure. For the
purpose of determining the optimal exercise policy, therefore, we can take the option valueVk
to be defined as above.

Since immediate exercise is a valid strategy at any time,Vk must be at least as large as(Sk � L)+. In fact, if (Sk � L)+ < Vk, this means that the immediate exercise strategy is
not optimal, and that some other strategy will yield a strictly greater expected present value
of payoff under our assumed stock price model. Thus, in this situation it is beneficialnot to
exercise but to wait. On the other hand, if(Sk � L)+ = Vk, then there is nothing to be gained
by waiting, at least under our assumed stock price model. In this case it is optimal to exercise
immediately. Indeed it can be shown rigorously that the stopping time� that achieves the
maximum in (3) above is given by� = min(fNg [ fm 2 [k;N ] : Vm = (Sm � L)+g): (4)

Let's look at the optimal exercise rule from a cost-benefit viewpoint. We can think of the
strike priceL as the “cost” of exercising the option, since this is the price one must pay to
obtain a share of stock. Similarly,Sk is the benefit from exercising at timek, since this is
the price one would obtain by selling the stock in the market. We just remarked above that it
may not be optimal to exercise as soon as the benefitSk exceeds the costL. To see this, it is
useful to view the option valueVk as representing the value of the choice to exercise. When
the option is exercised, the option (and the choice) is killed and this value is lost, so thatVk
represents the opportunity cost of exercising the option. Thus exercising the option incurs two
costs: thedirect costL, and the opportunity costVk. From the discussion above, the optimal
exercise strategy is to exercise when(Sk�L)+ = Vk, which in cost-benefit terms can be stated
as follows:

Exercise only when the benefitSk equals or exceeds the direct costL plus the
opportunity costVk.

This is the viewpoint that we will find most useful in this paper.
The valueVk can be computed for allk by a simpledynamic programmingprocedure (see

[6]) as follows. First observe thatVN = (SN � L)+. This is clear both from formula (3)
and from observing that the since option expires at timeN , there is no advantage to waiting.
Now stepping backward in time on the binomial tree, we computeVk in any state of the world
(given byFk) using the formulaVk = maxf(Sk � L)+;E(Vk+1jFk)=Rg: (5)

In other words, the option valueVk on a path! is the maximum of the immediate payoff(Sk(!) � L)+ and the expected present value of the option value one time step ahead, given
that we have seen the prefixFk(!) = !(k) so far. It can be shown that this backward-recursive
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formula for Vk and formula (3) are equivalent. And this is true regardless of the specific
process that the stock priceSk follows—that is, even ifSk does not follow the binomial model
assumed here. This fact will be useful in our application to software engineering decisions,
since the analog ofSk in those applications does not necessarily follow the binomial model.

6 Real options

Now let us consider a problem of making an irreversible capital investment in the face of
uncertainty. Once again we will assume we are working in a discrete event tree of depthN .
Suppose a firm is faced with the decision of whether to invest in a factory formaking a new
type of disk drive. The investment is irreversible, since the factory canonly be used to make
these disk drives, and if market conditions turn out to be unfavorable, the firm cannot regain
its lost investment. For simplicity let us say that the factory can be built instantaneously, at a
costL, and that it can produce disk drives forever at zero cost. Once the factory isbuilt, say
at discrete timek, the disk drives can be sold at the prevailing market price. The future profits
from disk-drive sales depend on how the market price evolves, which is uncertain.

Let Sk be the expected present (i.e. time-k) value of these future profits, under a suitable
market price model, probability measure, and discounting factor. ThusSk represents the value
of the asset that the firm can acquire by exercising its option to investL at timek. Alternatively,
one can think ofSk as the benefit from making the investment at timek, andL as the cost of
the investment. Clearly the firm will not invest in the factory ifSk < L.

On the other hand, should the firm invest simply becauseSk exceedsL? The traditional
NPV rule says “yes.” However, as argued by Dixit and Pindyck [9] and others, this rule is
flawed since it treats the decision problem as a now-or-never proposition. That is, if there is
no possibility of delaying the decision, then the rule is indeed reasonable. However, if the
decision to invest can be postponed, then the NPV rule ignores the value of waiting for better
information before making the investment.

The option viewpoint is the natural framework in which to quantify the worth of the flex-
ibility of being able to choose between investing now and at a future time. If we interpret
the benefitSk as the stock price, and the direct investment costL as the strike price, then
investing in the factory is analogous to exercising the American call option. Thus the valueVk
represents the value of the option to invest, or the opportunity cost of investing, attimek. The
reason we think ofVk as an opportunity cost is that when we exercise the option, we lose the
right to choose when to invest. In analogy with the above rule for an Americancall option, the
optimal rule for the firm given suitable definitions ofSk andVk is to invest if the asset value
(or expected benefit)Sk exceeds the direct cost of the assetL plus the opportunity costVk.
This idea is at the heart of the theory of real options.

There is nothing in the above discussion that is specific to capital investments made by a
company. The approach applies equally well to any investment situation where (a) there is
an expenditure of limited resources, (b) there is uncertainty over the future profitability of the
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investment, (c) the decision to invest is irreversible, and (d) the decision can be delayed.
As we argued before, many software design decisions satisfy these criteria. In general

suppose a software engineer is contemplating whether to commit resources to effect a certain
design decision. In terms of the variables introduced above, the direct costL is the cost to
effect the decision. The future profit stream is uncertain, depending on factors such as changes
in requirements, hardware, usage-patterns, etc. Once a decision to invest is effected, it cannot
be reversed. And investing can often be delayed.

The uncertainty over future benefits can be modeled as before in terms of an event tree. At
a discrete timek, the asset value or expected benefitSk is the expected value, discounted to
timek, of the future profit stream that would result if the design were already in place by timek . The option valueVk is the opportunity cost of implementing the design—the value of the
lost flexibility of being able to decide when if ever to implement the design.

Therefore, as in the capital investment scenario, the optimal decision strategy for the soft-
ware designer is to invest in the design when the expected benefitSk equals or exceeds the
direct costL plus the opportunity costVk. We thus have a rigorous way to quantify when it is
beneficial to delay a decision to invest in a software artifact, design,design change, etc. In the
next section, we illustrate the approach in more detail with an example concerning a decision
about whether to restructure a software system to impose a new information hidinginterface.

7 Applying Options Thinking to a Restructuring Decision

To illustrate our arguments, we will analyze a simple example of a software design decision:
namely, when if ever to invest the resources needed to restructure a software system to improve
its information hiding properties. We consider a problem in the domain of software agents on
the internet [20, 24, 33].

Agents are autonomous software entities that specialize in certain tasks.Several agents are
already in place on the World Wide Web. For instance, information agents can handle queries
such as, “What is the lowest cost airplane ticket from Charlottesville toPittsburgh today?”
There are news reading and filtering agents. There are also shopper agents that can search for
a good bargain on a compact disc. Given the vast size of the internet, it makes economic sense
for agents to use other agents to accomplish their goals. For instance, a financialportfolio
management agent could use another agent to obtain company reports.

Thus, each agent has a certaincapability,and one agent might need to find other agents
with needed capabilities. We imagine that the capabilities of available agents are stored in a
capability directory. In the vocabulary of information hiding, the contents of the capability
directory are likely to change and should thus be made the “secret” of a module.

Suppose that a software engineer is deciding whether or not to make the directory contents
the secret of a module. Specifically, he is deciding between the following twoways to design
this directory:

18



D: Distributed directory. A copy of the capability directory is hard-wired in the code of each
agent. An agent that wants to find another agent with a given capability can consult
its local directory at essentially 0 cost. This approach exposes the directory, which
is likely to change, to all the agents, and thus does not follow the information hiding
design criterion very well. Consequently, whenever an agent is added to the system,
the directory in each agent must be changed. The absence of an information hiding
module magnifies the cost of changes owing to the distribution throughout the system
of dependences on volatile information. We denote the total cost of the code changes
required when an agent is added at timen by the random variableDn.

C: Centralized Directory. There is one designated agent called theyellow pagesagent that
implements the capability directory. All other agents access directory information through
an interface of this agent. This approach employs information hiding since the new
agent hides the aspect of the system judged likely to change. We letC denote the to-
tal cost of initially hard-coding the centralized directory and its associated interfaces.
When a new agent is created, the yellow-page agent needs to be changed. Also, an
agent requiring a certain capability needs to query the yellow-page agent. We let the
random variableCn denote the total query and update costs at timen.

Which approach should the software engineer choose? Suppose, first, that there is no de-
sign already in place and no agents to start with. In this circumstance, when the system has to
be built, the engineer does not have the flexibility to delay deciding. The choice among alter-
natives has to be made for the system implementation to progress. Here, the NPV approach is
justified.

In order to compare choices C and D, we can assume that the costs that are commonto
both approaches are 0. The only relevant costs areC andCn for choice C, andDn for choice
D. In fact we can view the problem as one of deciding whether or not to use choice C, and
express the costs and benefits relative to choice D. There are two quantitiesof interest when
choice C is compared with choice D:� The direct cost of choice C, i.e., the immediate cost of implementing it, which isL = C.� The monthly profit of choice C relative to D in monthn for n � 0, which isBn =Dn � Cn.

We view the software design problem as an investment decision problem: ShouldL dol-
lars be invested in choice C? Let us assume a discount factorR. Consider the traditional
NPV approach to this problem. To apply it, we first compute the expected present value S0
(discounted to time 0) of the stream of profitsBn; n � 0 from the investment:S0 = 1Xn=0 EBn=Rn; (6)
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which we refer to as the expected benefit of choice C relative to D at time 0.The NPV of the
investment at time 0 is NPV = S0 � L = S0 �C:
The traditional NPV rule states that if the NPV is positive, then the investment should be
made, otherwise not. Thus a reasonable decision rule, when there is no design to start with, is
the following:

If the expected present value of the future profitsS0 that would flow from choice C
exceeds the direct costC of implementing it, then go ahead and implement choice
C, otherwise implement choice D.

As noted by Boehm [3], this kind of rule is often used by software engineers, implicitly or
explicitly.

But now we ask a different question, and one likely to arise given that so much software
engineering activity is in maintaining existing systems rather than designingnew ones. Sup-
pose there is already a system with several agents in place, that the distributed directory was
implemented (choice D), and the software designer is contemplating whether or notto invest
in restructuring the system so as to switch to choice C. In addition to the costC of creating the
yellow pages agent, there is a costCs of scrapping the distributed approach. Each agent must
be changed so that it queries the yellow pages instead of its own local directory. Thus the total
direct cost of choice C isL = C + Cs. Given these costs, how should the engineer decide?

It is tempting to propose the following rule (compare it with the previous rule):

If the expected present value of future profitsS0 that would flow from restruc-
turing exceeds the direct cost of restructuring,L, then go ahead and restructure,
otherwise do not.

However as we noted before, there is a serious flaw in this analysis. It compares only two
choices: switching to choice C now or never. In the case where there was no design to start
with and one was required, the engineer was forced to decide between choices C andD. There
was no flexibility to delay making a decision. The decision was now-or-never, and the NPV
rule was appropriate. However, in the restructuring situation the designer has the option to
wait in hopes of being able to make a better decision in the future.

The flexibility to wait has value that is lost once the designer exercises the option to restruc-
ture. The designer cannot reclaim the resources invested in restructuring simply by changing
her mind. Thus, in addition to the direct costL, there is an additional opportunity cost to
investing that represents this loss in flexibility. Therefore, at any timek, the value of the ex-
pected profits discounted to timek (i.e.,Sk) must be sufficiently higher than the direct costL
to justify switching. In short, the designer should compare the value of investingnow (at time
0) versus investing atall possible future times. She should really be askingwhenif ever to
make the investment in restructuring.
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We emphasize again that this situation is similar to that of a manager facing a decision to
invest capital in new plant and equipment, which, in turn, is analogous to the decision facing
the holder of an American call option on a stock. At any timek, the designer/manager/holder
has the right but not the obligation to investL (the exercise price of the option) to receive a
stream of profits with an expected present valueSk (the stock price). Exercising the option
kills the investment opportunity, just as in the case of an American option.

Let us define the random variableSk to be the expected benefit of restructuring at timek (the asset value at timek), i.e., the expected value of the future profit stream resulting
from investing at timek; discounted to timek. We computedS0 above, and the payoff from
exercising at time 0 isG0 = (S0�L)+, since one would not invest ifS0 < L. Notice that this
is the same as expression (2) for the payoff from an American call option on a stock at time 0.S0 is analogous to the stock price at time 0—thus our choice of notation.

How do we generalize the expression (6) forS0 to timek? To compute the benefitSk at
time k, we proceed as in expression (6), except that we discount the profits to timek rather
than time 0. We also replace the expectation by the corresponding conditional expectation
conditioned onFk. Finally, we only perform the summation from timesk to1. ThusSk is
given by the following expression:Sk = 1Xn=k E

�BnRk�n����Fk� : (7)

Note that, unlikeS0, Sk is a (Fk-measurable) random variable. The expected benefit of re-
structuring to institute an information hiding yellow-pages agent at timek is thenGk = (Sk � L)+; (8)

which is the same as expression (2) for the payoff from a call option. The valueVk of this
option represents the value of the investment opportunity, which would be lost if we were to
exercise at timek. As described in Section 5,Vk can be computed for anyk using dynamic
programming. Also, we mentioned that it is optimal to exercise the option when thevalueVk
equals or exceeds the payoffGk. Thus it is optimal to switch to choice C whenSk � L � Vk,
or Sk � L+ Vk:
Informally, we should exercise our option to switch to choice C when the benefitSk is at least
as much as the sum of the direct costL and the opportunity costVk. Thus our new design
decision rule for the software engineer is the following:

If at any timek, Sk, the expected value discounted to timek of future profits
that would flow from restructuring, is at leastVk more than the direct costsL of
restructuring, then go ahead and restructure, otherwise do not.
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8 A Numerical Example with One-Period Uncertainty

We make our analysis of the restructuring decision concrete by means of a numericalexample.
Suppose the costC to restructure is 9000, and the costCs of scrapping the distributed directory
structure is 1000. Thus the total direct costL of restructuring isC + Cs = 10000.

To keep complications to a minimum, we assume that building the yellow-page agent
and scrapping the distributed directories takes 0 time. Each discrete time step in our model
represents 1 month. Timen represents the beginning of then' th month, forn = 0; 1; 2; : : : .
Let us imagine that during the current month, or month 0, several new agents will be created,
and that the associated updating cost under the distributed approach isD0 = 2000. We assume
that the total query/update cost under the centralized approach isCn = 500 at all timesn. Thus
if we move to a centralized directory at the beginning of month 0, the monthly profit for month
0 would be B0 = D0 � C0 = 2000 � 500 = 1500:

Suppose an agent development technology is being deployed this month, and there is a
probabilityp = 0:5 that it will succeed and be widely accepted. If it succeeds, several new
agents will be created each month, starting with month 1. This outcome is favorable for
approach C and we will therefore superscript variables under this scenario with the letterf .

In particular, we suppose that in this situation the total update cost associated with agent
creations under approachD, isDfn = 3000 for all n � 1. (It becomes expensive to accom-
modate the changes owing to the inadequate hiding of the aspect of the system that turned
out to be volatile.) On the other hand, if the technology fails, very few new agents will be
created, a situation which is unfavorable for approach C, since the expense of switching to a
centralized directory will not be compensated by the cost-savings of the information hiding
restructuring. Thus, we superscript variables in this scenario by the letter u. We suppose that
the corresponding update cost under choice D in this case is much lower, atDun = 400 for alln � 1.

Thus from month 1 onward, the monthly profit from restructuring for information hiding
would be Bfn = Dfn � Cn = 3000 � 500 = 2500; n � 1
in the favorable scenario, andBun = Dun � Cn = 400 � 500 = �100; n � 1
in the unfavorable scenario, each case occurring with probability 0.5. Therefore, forn � 1,

EBn = EB1 = pBf1 + (1 � p)Bu1 = 0:5(2500 � 100) = 1200:
Our model is represented by the event tree in Figure 1. There are just two possible paths in
this event tree, which we denote by!f (favorable) and!u (unfavorable). Note that fork � 1
andn � k, on the favorable path,

E(BnjFk)(!f) = Bfn = Bf1 = 2500;
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������@@@@@RB0 = 1500S0 = 13500 Bf1 = 2500Sf1 = 27500
Bu1 = �100Su1 = �1100

--B
f2 = 2500Sf2 = 27500

Bu2 = �100Su2 = �1100: : :: : :
Figure 1:Event tree for the numerical example

and on the unfavorable path,

E(BnjFk)(!u) = Bun = Bu1 = �100:
Assuming a monthly discount factor ofR = 1:1, let us calculate the benefit of switching

at timek. Fork = 0, we use expression (6) to computeS0 = 1Xn=0 E(Bn)=Rn= B0 + 1Xn=1E(B1)=Rn= B0 + E(B1)=(R � 1) (9)= 1500 + 1200=0:1= 1500 + 12000 = 13500:
Fork � 1, from expression (7), the benefit from switching at timek in the favorable scenario
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(or on the favorable path) is Sfk = 1Xn=k E[BnjFk](!f)Rk�n= 1Xn=kBf1Rk�n (10)= 1Xn=0Bf1=Rn (11)= Bf1 RR � 1 (12)= 2500(1:1)=0:1 = 27500;
which is bigger than the direct costL = 10000. Thus in the favorable scenario the expected
benefit of switching is always greater than the cost. Similarly,Suk = Bu1 RR� 1 = �100(1:1)=0:1 = �1100; k � 1; (13)

which is smaller than the direct costL = 10000, so in the unfavorable scenario the expected
benefit of switching is smaller than the cost. Note that from the definitions ofS0, Sf1 andSu1 it
follows that S0 = B0 + (p=R)(Sf1 + Su1 ): (14)

Given this model, should the software designer investL = 10000 and restructure in order
to switch to design C now, or would it be better to wait for a month and invest only if the
situation favors a switch, i.e. only if the new technology succeeds, making it certain that many
changes will be needed? Since there is no uncertainty beyond the first month, these are the
only two strategies worth considering.

We first approach this question by computing the net present value of these two strategies.
The NPV of Strategy 1 isNPV (1) = S0 � L = B0 + E(B1)=(R � 1)� L = 13500 � 10000 = 3500:

(15)

Since the NPV is positive, the NPV rules indicates that the designer should go ahead with
the investment. This reasoning is flawed, as we pointed out before. It ignores an opportunity
cost: that of waiting for information and keeping open the possibility of not investing if the
technology fails. This opportunity is lost by investing now.

Let us calculate the net present value of investing under Strategy 2: Wait one month,
and invest in switching to the yellow-page agent only if the technology succeeds. Since the
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technology succeeds only with probabilityp = 0:5, the net present value of Strategy 2 isNPV (2) = (p=R)(Sf1 � L)= (p=R)�Bf1 RR� 1 � L� = (0:5=1:1)(27500 � 10000) = 7954; (16)

which is significantly greater than the NPV of investing immediately. This clearly shows that
it is better to wait.

We now approach the question by computing the valueVk of the investment opportunity
at timesk = 0 andk = 1. The payoff if we exercise our option to invest at timek is given
byGk = (Sk � L)+ which is identical to the expression for the payoff from an American call
option. Since there is no uncertainty after time 1, it is easy to see thatVk = Gk = (Sk � L)+
for all k � 1. In particular, if the technology succeeds, the option value at time 1 isV f1 = (Sf1 � L)+ = (27500 � 10000)+ = 17500; (17)

and if the technology fails,V u1 = (Su1 � L)+ = (�1100 � 10000)+ = 0: (18)

From the backward recursion (5) we conclude thatV0 = maxfG0; (1=R)E(V1)g= maxfG0; (1=R)(pV f1 + (1� p)V u1 )g= maxn(S0 � L); (p=R)(Sf1 � L)o (19)= max�(B0 + E(B1)=(R � 1) � L)+ ; (p=R) �Bf1R=(R � 1)� L�+� (20)= maxf3500; (1=1:1) � 0:5 � (17500 + 0)g= maxf3500; 7954g= 7954: (21)

Notice that the values 3500 and 7954 in themax above are exactly the NPVs of strategy 1
and strategy 2, respectively. Also,V0 > G0 = 3500, so it is not optimal to invest right away.
However, after 1 month, if the technology succeeds,V1 = G1 = 17500, so it is then optimal
to invest at that time. Thus we have shown in two different ways that strategy 2 is optimal. In
general when the uncertainty lasts for several periods, the approach of computing NPVs for
the exponentially many possible strategies is impractical. The second dynamicprogramming
approach from option pricing theory would be the method of choice.

9 Qualitative Design Principles

In previous sections we showed how to view a software design decision as a decision about
when if ever to make an irreversible capital investment in the face ofuncertainty. We presented
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an important analogy, drawn by others, between investment decisions and optimaltiming of
decisions to exercise call options. We thus linked software design decision-making to the
theory of options. To the extent that the analogy is valid, we can expect options theory to
provide insights into software design decision-making.

In particular, we believe that options concepts provide intellectual tools that can help us
to better understand and to hone our software design decision-making heuristics. Ultimately,
the theory of options, perhaps in conjunction with other advanced economic theories, might
provide a firm foundation for what today remain informal and hard-to-grasp concepts such as
“information hiding,” “delaying of design decisions,” “design for reuse,” and so on.

To strengthen the case for the claim that options theory can help us to think about how to
make design decisions, in this section we focus on how key parameters influencing options
values affect corresponding software design decisions. In so doing, we seek to show soft-
ware designers how concepts from options theory can be brought to bear in software design
decision-making situations.

We do this in the context of the numerical example presented in the last section. In par-
ticular, we study how the value of the option to restructure depends on the uncertaintyover
the benefits of investing, the profitability of switching, and the probability of a favorable out-
come, as well as on the direct cost of the design changeL. We go on to show how the options
approach reveals that the designer is not only an investor in concrete assets but in future op-
portunities. Options theory gives us a new view of the depth and complexity of the situation
facing the savvy software designer.

Recall that the scenario where the technology succeeds was deemed favorable for restruc-
turing because, in that scenario, the expected benefitSf1 of restructuring at time 1 exceeds
the direct costL (expression 12). The scenario where the technology fails is unfavorable for
restructuring because in that scenario the expected benefitSu1 of switching at time 1 is less
thanL. In the following subsections, as we vary parameters, we continue to assumeSf1 > L > Su1 ;
so that the two scenarios retain their favorable/unfavorable status.

9.1 Effect of Direct Cost

From expression 19, we notice that the valueV0 of the option is the maximum of two quanti-
ties: the NPV of strategy 1, namely(S0�L), and the NPV of strategy 2,(p=R)(Sf1 �L). Note
that sincep=R < 1, asL decreases, the former NPV increases faster than the latter. Thus, if
all other parameters remain the same, there is a critical value for thedirect costL below which
it is optimal to restructure immediately, i.e., at time 0.

Another way to state this principle is that if the direct costL is sufficiently low, the cost
of waiting (the profitS0 � L one would forgo) outweighs the value of waiting (the valueV0
of the flexibility to reverse the decision not to invest). Since there is nothing special about
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time 0, this statement applies at any time. Thus we provide a rigorous, options-theoretical
justification for the following software design guideline:

If the cost to effect a software design decision is sufficiently low, then the benefit of
investing to effect it immediately outweighs the benefit of waiting, so the decision
should be effected immediately.

Although this design decision-making rule of thumb seems obvious, it contradicts a heuris-
tic that one of the authors has heard promulgated on numerous occasions by recognized soft-
ware experts, and which we cited at the beginning of this paper: Always delay making design
decisions until you are forced to make them because they block progress on all other fronts.
The plausible reasoning behind this rule is that you should wait until all possible information
is in before investing. The options approach shows that this rule is wrong in general. Options
theory also gives us a way to make precise the appealing notion that by reducing costs new
technologies, such as restructuring tools [15], can toggle a situation from one in which it is
best to delay to one in which immediate investment is optimal.

The options interpretation of software design decision-making teaches us that we are in
the much more difficult position of having to strike a balance between the value of thebenefits
of investing immediately to have an asset now and the value of the flexibility lost when we
make the irreversible decision to invest—and that that balance depends on a rangeof factors.

9.2 Effect of Uncertainty over BenefitsBn
In the numerical example of the previous section, the two possible values ofBn for n � 1
wereBfn = 2500 in the favorable case andBun = �100 in the unfavorable case. Now suppose
we keep all parameters the same, except that we changeBfn to 3000 and changeBun to�600:
Notice in particular that the expectation ofBn,

E(Bn) = 0:5� (3000 � 600) = 1200; n � 1;
is the same as before, but that thevarianceof Bn is larger. This new parameterization models
greater uncertainty about the rage of future benefits without any change in the net expected
benefit, i.e., a “higher risk, higher return” project.

Since the expectation remains the same, the NPV of Strategy 1, (“restructure at time 0”),
given by expression (15), is the same as before, because (see expression 9) the expected benefitS0 of switching at time 0 depends only on the expectation of eachBn. On the other hand, if the
software engineer waits for 1 month and switches only if the situation is favorable (Strategy
2), the net benefitSfk (see expression 12) isSfk = Bf1R=(R � 1) = 3000 � 1:1=0:1 = 33000; k � 1;
which is bigger than the previousSfk value of 27500. Thus the NPV of Strategy 2 (see expres-
sion (16)) is bigger than before.
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This shows that the incentive to delay the decision to invest in restructuring increases with
project risk, manifested as uncertainty over future benefitsBn, as long as all else, notably
the expected benefit, stays the same. Intuitively, this makes sense. The greater the uncertainty
over the value of a manual—i.e., the greater the volatility in potential outcomes—the greater is
the incentive to wait for better information before investing resources. With all else remaining
the same, the value of options increases with the volatility of the value of the underlying asset.

To make the idea concrete, consider the options formulation of our design problem. The
expected payoff of restructuring immediately is the same as before since the valuesE(Bn)
are the same. However, if restructuring is delayed, then one of two outcomes occurs. In the
unfavorable case (see (18)) the payoffV u1 is still zero, because the design option will not be
exercised. However, in the favorable case, the payoffV f1 (see (17)) is greater than before.
Thus the option valueV0 given by (19) increases.

In other words, the opportunity cost of restructuring immediately is greater, andall else
remains the same, so there is more incentive to wait. Thus we can conclude with the following
qualitative design guideline, which seems intuitively natural, but which wehave now given a
sound formal justification in terms of real options theory:

With other factors, including the NPV, remaining the same, the incentive to wait
for better information before effecting a design decision increases with the uncer-
tainty about (the volatility of) future benefits.

Conversely, as uncertainty about the future value of a software asset diminishes, it becomes
ever clearer whether or not it would pay to invest. In the limiting case of acertain future, one
can decide immediately whether to invest or not based on the NPV. If a manual is extremely
likely to be profitable, under our model there is little incentive to wait to write it. Similarly, if
its value is clearly minimal or negative, a decision not to invest can be made immediately.

9.3 Effect of the Probability of a Favorable Outcome

In the example of the previous section, we assumed that at time 0 the likelihoods of favorable
and unfavorable outcomes were equal, withp = 0:5. This probability distribution represents
the risk that the favorable outcome will not be actualized. We now examine how the valueV0
of the real option depends on that probabilityp of a favorable outcome.

Consider the payoffG0 = (S0 � L) from immediate exercise, i.e., the NPV of strategy 1
(see expression (14)):G0 = B0 + (pSf1 + (1 � p)Su1 )=R � L = (p=R)(Sf1 � Su1 ) +B0 � Su1=R � L:
If we plot G0 againstp the slope would be(Sf1 � Su1 )=R. The discounted expected value of
the optionV1 is thus (expression 19)

EV1=R = (p=R)(Sf1 � L):
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This is the NPV of strategy 2. If we plot this value againstp, we find the slope to be(Sf1 �L)=R. Since we have assumedSu1 < L, we see that as we increasep, the NPV of strategy 1
grows faster than that of strategy 2. Thus as the probabilityp of a favorable outcome increases,
at some point the strategy of investing right away becomes optimal. To put it differently, as
the risk of a unfavorable future decreases, so does the incentive to wait. We have thus given a
rigorous basis for the following design decision-making heuristic:

The incentive to wait before investing varies with the likelihood of unfavorable
future events occurring.

Notice that this decision-making heuristic addresses uncertainty and risk ina different way
than the previous rule. The previous rule addresses the variance in the payoffs under differ-
ent outcomes. This rule addresses variation in the uncertainty about the likelihoodsof future
events that influence outcomes. We have thus identified two important and orthogonal di-
mensions of risk and have presented heuristics with rigorous theoretical underpinnings for
reasoning about and responding to them.

9.4 Effect of Uncertainty over Direct Cost

In the example of the previous section we assumed that the direct costL of restructuring is
fixed and known at all times. We now examine the possibility of the costL in the future being
uncertain. This aspect of uncertainty is critical in software engineering, especially if delaying
design decisions is an accepted strategy: It goes to the question of estimatingproject costs
at future times. Uncertainty about costs might reflect uncertainty about availability of skilled
labor in the future, or about changes in technology, such as the development of automated
restructuring tools that could significantly reduce costs [15].

To simplify matters, let us assume that the monthly profitBn from restructuring is 1500 at
all timesn � 0 (there is no uncertainty in this regard). Thus the expected benefit of switching
at timek, for anyk � 0, is given by an expression analogous to expression (12) (in either
scenario): Sk = Bk RR � 1 = 1500(1:1)=(0:1) = 16500; k � 0:

However, now assume that the direct costL0 at time 0 is known to be 10000, but that it
is uncertain at time 1. Let us assume thatL1 is eitherLf1 = 5000 (a favorable situation) orLu1 = 20000 (an unfavorable situation). The NPV of strategy 1, investing now, isNPV (1) = S0 � L0 = 16500 � 10000 = 6500;
which is positive. The traditional NPV rule suggests switching right away. Again, this rule is
faulty because it ignores the contingent, option strategy: Wait a month, and switch only if the
direct cost isLf1 = 5000. The NPV of this strategy isNPV (2) = (p=R)(S1 � Lf1) = (0:5=1:1)(16500 � 5000) = 11500;
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which considerably greater than the NPV of the first strategy. Thus it is optimal to wait a
month in this case before deciding whether to invest.

Now let us go a step further, and see what happens if we keepL0 the same and increase
the uncertainty (in particular, the variance) ofL1, while keeping its expectationEL1 the same.
This would meanLf1 is smaller, andNPV (2) larger. In this case, the value of waiting is even
greater. This situation is analogous to the one in Subsection 9.2. When the uncertainty over
direct costs is larger, and the expectation remains the same, the potential profit in the favorable
scenario increases, while in the unfavorable scenario it remains the same at 0. Thus we have
provided a rigorous theoretical justification for another heuristic:

All else being equal, the value of the option to delay increases with variance in
future costs.

9.5 The Value of Information

In subsections 9.2 and 9.4 we showed how increasing uncertainty over the directcostL and
profit Bn increases the incentives to postpone the decision to commit the resources required
to implement a design decision. However, this should not be taken to mean that uncertainty
always leads one to delay all investments. Indeed, as we will see, quite theopposite is true.

For example, in situations where a small investment today produces informationthat dis-
pels uncertainty about the actual but unknown state of the present world, it can be optimal
to invest resources in prototyping experiments. As Boehm has argued [3], such investments
are justified when the information that they reveal is worth more to the decision maker than
its costs—e.g., when a small investment in a prototype averts a costly commitment to an un-
workable design. More generally, information has value that can be quantified. This issue is
important in decision analysis in systems engineering, and in decision-making with experi-
mentation in particular. See Hillier and Liebermann for an introduction toand references on
the topic [17].

The options view sheds additional light on the value of information approach—and on the
valued of phased investments in particular. As we discuss in the next section, the options view
also reveals an important, orthogonal dimension in which early investmentsunder uncertainty
can be justified: not only under uncertainty about the present state of nature, but also about
how the future will turn out (e.g., whether certain markets will evolve in favorable ways). We
will illustrate both of these ideas, in this subsection and the next, in the context of our design
restructuring example.

To begin with, suppose that the software engineer can perform the restructuring forinfor-
mation hiding in two phases. The first phase costs 1000. With probability 0.5, that expenditure
will be adequate to restructure the system; but with probability 0.5 another 3000 dollars will
have to be invested to produce a satisfactory new design. It might be that the selected restruc-
turing tool turns out to have some unforeseen shortcomings that require some manual restruc-
turing, at a much greater cost. More generally, the project might face what havebeen called
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technical risks—we will call them internal risks—that can be resolved only byinvestigating
the actual state of nature (to use Boehm's phrase). In our case, investing inthe first phase
gives the designer valuable information about the costs and benefits of further investments.

Let us suppose that, once completed, the profit from restructuring at each timet is 200.
Thus the present value of the profit stream at any time is200R=(R�1) = 2200. The traditional
investment analysis compares the expected cost of restructuring,1000 + (0:5)(3000) = 2500,
with the present value of profits, which is 2200. Owing to the risk that nature is inan unfavor-
able state (that the restructuring tool actually has as yet unknown shortcomings) the NPV is
negative, and it would seem that one should not invest in the first phase of the restructuring.

However, this analysis ignores the value of the information obtained from completing the
first stage of the implementation, and the fact that the engineer can abandon the project if
a second phase costing 3000 turns out to be necessary. That is, the NPV analysis ignores
the contingent strategy—and thus the designer's good judgement in the face of information
revealed by the first phase. In particular, in this case, the traditional analysis ignores the value
of the option that the manager has to cancel or continue the project in light of the information
revealed by the first phase. The corrected NPV is(0:5)(2200) � 1000 = 100.

In other words, for 1000 today the designer can buy an asset that with even odds is worth
either 2200 or 0 and find out whether or not it's a winner. It's clearly a good bet: 1000 for
1100 in expected value. If the bet turns out to be a loser, the designer, qua strategist, leaves
the table, refusing to commit 3000 more to a losing proposition, but knowing that she spent
her 1000 well, despite what might be seen as the “failure” of the project.

The designer as strategist thus expects to lose some bets, even good ones. The designer
who “anticipates” incorrectly, for example, has not necessarily made a design error. You' re
not a loser because you lose some bets; you' re a loser if you make losing bets. In this sense
there's real wisdom is the saying that,it's not whether you win or lose but how you play the
game. The designer should invest in the first phase of the project despite even odds of an
unfavorable outcome because the expected value of the option outweighs its cost. The options
view thus highlights the strategic dimension of software design. In this example, thedesigner
plays a strategy game against the present but uncertain state of nature. We thus derive another
heuristic rule, which has a rigorous justification in options theory:

If investing a little today reveals information about a state of nature that deter-
mines whether a follow-on investment is wise, and if the cost of that information
is low in relation to the potential value of the follow-on investment, then it is a
good idea to make the initial investment, even if it ultimately shows the follow-on
investment to be unwarranted.

From this insight comes an additional rule for managers.

Don' t punish designers for unfavorable outcomes, but only for unwise invest-
ments. Reward designers who take intelligent risks.
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We view the right to make a decision about a follow-on investment in light of information
revealed by an earlier investment as an option. In our example, exercising the initial option
to invest 1000 yielded a second option in the form of the right to discontinue the project.In
general, exercising one option could buy another, and so on, for many steps. The initial 1000
buys an option to discontinue the project to develop the tool. As we will see in the nextsection,
the tool might itself embed an option to restructure the system. Restructuringin turn might
provide the option to adapt to an increase in demand should that event actually occur. The
actual profitable opportunity might be many steps away.

This insight is of fundamental importance in software design decision-making. Tradi-
tional software economics views overlook the strategic value of the options—i.e., flexibility—
embedded in development projects and assets. The options approach is not only superior to
traditional NPV analysis for quantitative reasoning about projects and assets with embedded
options, but even more importantly for our purposes in this paper, it provides a firm theoretical
foundation for understanding and characterizing the critical value of good strategyin design.
The ability to make investment decisions contingent on the resolution of internal and external,
present and future uncertainties is really of the essence in software design.

9.6 The Value of Opportunity

Just as the options view shows that it can make sense to invest in the face of uncertainty about
the present state of nature, so it shows too that it can pay to invest in the face of uncertainty
about the future. Again the key is that an early investment can create an option for follow-
on investments. If there's a chance that the future will turn out favorably, then it can be
strategically wise to invest some today to “keep your foot in the door.” Options theory shows
that it can be wise to invest today even if the expected value of both the initial and of the
follow-on investments are negative according to a traditional NPV analysis.

If the option to continue investing is worth more than it costs, then it makes sense to invest
in it, even if a traditional NPV analysis shows the investment to be unwarranted. The tradi-
tional analysis overlooks the value of having the flexibility to respond to changing conditions
in the future. Furthermore, it overlooks the value of flexibility in real assets that are already
held, e.g., the value of flexible architectures, reusable assets, softwarethat has been designed
for change, and software that provides the ability to take advantage of opportunities that might
arise. Again the options view can provide significant insights by giving us a sound basis for
reasoning about the value of flexibility, or the lack thereof, in these dimensions. We thus frame
the following guideline.

As uncertainty grows, consider making investments today in design assets that
might appear to be unjustified on traditional software engineering economics
grounds but that have potential for significant payoffs should conditions turn fa-
vorable.

For project managers with an analytical bent, the following fact is of course critical:
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You can analyze the value of flexibility embodied in such assets using options
pricing models, given specified assumptions about cash flows, probabilities of
events or states of nature, variance in costs and benefits, interest rates, the time
period within which you have the flexibility to invest.

This is not a line of reasoning that we wish to pursue in this paper. However, we are confi-
dent that as people come to appreciate the value of an options view of software design—in
reuse, iterative and spiral development processes, legacy systems, and software architecture,
for example—that options theory will emerge as an important quantitative tool for software
management. The mathematical foundation for rigorous valuation of flexibility in the form of
options was laid by Black and Scholes in 1973 [2] and remains useful today for such purposes.

To make these points more concrete (but with the arithmetic elided), let us return to our fic-
tional restructuring problem. Consider the following alteration in the situation. Let's assume
that the project to develop the new agent technology faces certain technical barriers. Assume,
too, that if it overcomes them, then there's a good chance that the demand for agentswill soar.
In this case, the ability to restructure quickly will have a much greater likelihood of being
valuable. However, if the barriers are not overcome, the likelihood of a significant increase
in demand for agents will remain low. In that case, investing in restructuring will continue to
have a poor expected value.

Suppose, furthermore, that if the agent technology succeeds—let's say one year from
now—then we will have a window of opportunity that will close three months thereafter.
Restructuring within three months so as to accommodate the growth in demand foragents
will position our product to succeed. However, if we' re unable to restructure within that time,
then the competition will beat us to market with a product that accommodates the change ef-
fectively. In that case, they' ll win, locking us out of the market, and closing off the opportunity
for us to restructure our system to capture the potential profit.

Finally suppose that today we do not have the ability to restructure our product within three
months, owing to lack of experience and the necessary infrastructure to use our restructuring
tools effectively. Perhaps we plan to use Refine [21] as a tool, which requires a custom front
end that does not yet exist, and that will take more than three months to build.

Given the uncertainty about whether our system will actually have to accommodate rapid
change—a factor that is contingent on the success of the agent development technology, and
still somewhat uncertain even in the case of success—should we commit resources today to a
restructuring project? A more modest question is, Should we invest a little now to develop a
restructuring tool that might become valuable in the future?

The standard approach says commit to either tool development or to restructuring if the
traditionally computed NPV of either project is positive. If the NPVs of both tooldevelopment
and restructuring are negative under such an analysis, does that mean there's noincentive to
invest? The options approach shows that there can still be such an incentive.

Clearly, a simple options-based strategy of delaying investment until the keyfuture events
are known is unattractive, because if we don' t invest anything today, and then if the agent
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technology does succeed, we won' t have time to take advantage of the opportunity, because
we won' t be able to restructure our system quickly enough.

Fortunately, there is another strategy: We can invest a little today to build a restructuring
tool that positions us to exploit growth in the agent market, should it occur. Although the tool
might have some intrinsic value of its own, that value might not outweigh its costs.But the
real value of the tool includes the opportunity to restructure quickly, which in the scenario
we hypothesize amounts to an ability to exploit a potentially lucrative opportunity.Realistic
scenarios can be constructed easily in which the NPV of both the tool and restructuring are
negative under a traditional analysis but in which an options-based analysis showsinvesting
in the tool to be a good bet. The value of the ability to exploit a potentially lucrative oppor-
tunity can more than compensate for the apparently negative value of the tool. The value of
the flexibility afforded by the tool, overlooked by traditional software engineering economics
approaches, is properly understood and accounted for as a real option.

The critical point throughout this paper is that options have value because they represent
opportunities in the form of the flexibility to make contingent investment decisions.The
savvy designer is thus aware that she's responsible not only for exercising options, butfor
investing strategically to create options—as in our hypothetical restructuring tool. Moreover,
options theory explains how incentives to create options vary with uncertainty andwith other
factors. Real options theory provides a rigorous basis for modeling the value of such strategic
investments.

Readers interested in a deeper but elementary discussion of the value of expansion flexibil-
ity, in the options interpretation of flexibility, and in a worked example are referred to Chapter
21 of Brealey and Meyers, on applications of options pricing theory [5].

9.7 On Design as an Anticipatory Activity

Let us now reconsider in light of the preceding discussion the old idea that softwaredesign is
an anticipatory activity. Put simply, the idea is that if you guess right about what's likely to
change and then design accordingly, “you win,” otherwise, “you lose.” By appealing tothe
well-developed theory of options, we have shown this idea to be simplistic.

Rather, viewing design decisions as real options leads us to see the designer as a manager
of irreversible capital investment decisions in the face of uncertainty.As such, she has to play
a much more subtle and interesting game. She not only decides whether or not to investtoday,
nor only when if ever to invest in real assets. She also has to think about how and when to
invest to create opportunities to make additional potentially lucrative investments. She views
not only artifacts but also flexibility and opportunity as assets having tangible value.

Returning to the issue of information hiding, we can see that the savvy designer's thinking
might go beyond designing interfaces to hide design decisions that are deemed “likelyto
change.” She might for example design interfaces to hide decisions that are deemed“not very
likely to change,” but where the payoff in the unlikely but favorable scenario is large. More
generally, the architect is is a position of having to make strategic investments in flexibility.
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She has to split investments between cash-flow-producing investments (e.g., programs that
work today) and those previously intangible aspects of design that we can now interpretas
options (e.g., the flexibility to adapt to changing requirements). Moreover, she is in an iterated
“game,” in which she has to make such decisions adaptively as time passes andas various
uncertainties are resolved.

Like any capital investment manager, the designer gets paid to take strategically sensible
risks. The options approach helps us to see the real complexity of software design decision-
making. Design is an anticipatory activity, but it is not simple or straightforward. That view
of design sees the designed artifact as a passive investment and does not accountfor the value
of flexibility to respond to emerging contingencies. By contrast, we view design notjust as
anticipatory but as astrategic activityin which one tries to make sequences of good bets on
future and other uncertain outcomes.

To the extent that a good design is a flexible design (reflecting Parnas's dictum, “design for
change”) we thus have a rigorous basis in options theory for placing a value on good design
above and beyond the value of merely having a program that solves today's problem or even
today's and those of tomorrow that we know today will occur (such as the coming of Year
2000). In our view, the value of a good design is also in the value of options embedded in
the design. Conversely, we can define the legacy system as one that might have enormous use
value but little value in the form of embedded options—i.e., that is has little flexibility.

To the extent that options theory gives us a way to place a value on flexibility, it might
even give us a concrete way to convince even skeptics of the value of good softwaredesign. In
principle, perhaps even in practice, options theory gives us a way to put a quantifiedvalue on
flexibility—and to evaluate whether a given investment in flexibility is a goodbet. We think
that good designers and managers already act in ways consistent with the insights that we have
formalized by appealing to real options theory.

10 Conclusion

We started this paper with the claim that current software design doctrine,cast in such terms
as information hiding, delaying design decision, and software reuse, is hard to understand
and to justify, and that one key reason for this difficulty is that current design doctrines lack
sound or adequate theoretical foundations. We have taken an economics stance on the issue
of foundations, and have, in particular, advocated a real-options-based approach to evaluating,
improving, and generating software design decision-making heuristics.

We presented the analogy between capital investment decisions and financial call options,
which has gained considerable prominence in recent economics research. We then contributed
the insight that there is a strong analogy between decision-making in software design and in
capital investing. We thus justified our appeal to real options for a theoreticalfoundation for
software design decision-making guidelines.

Next, we presented the basic concepts of options theory, with enough mathematical back-
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ground for a person to understand options valuation at a basic level. We also presented a simple
worked example to show how the concepts can be applied to a simple, but still surprisingly
subtle, decision problem in software design. The decision problem we selected was about
whether or not to restructure a software system to impose an information hiding interface that
would ease a set of changes that might or might not be needed.

Next we showed how options values change as critical parameters are varied,and how
those behaviors can lead us to well founded design heuristics. We ended up deriving, with
rigorous justification, a set of software design decision-making heuristics. Forexample, it
can pay to invest some now, even in areas that do not at present appear profitable, to create
potentially profitable opportunities. From an architectural point of view, this suggests that it
might sometimes be profitable to build flexibility in a system not in anticipation that given
changes are likely but because the payoff in the unlikely event that change is needed ishigh
enough relative to the cost to justify the investment.

Of course, being able to value flexibility can also give the manager a well founded justifi-
cation for controlling the flexibility-obsessed designer. There is a price abovewhich an option
is not a good buy. Flexibility is neither good or bad; it's just a worthwhile investment or not.
Moreover, whether it is or isn' t depends on a set of factors that might not be obvious to the
causal software designer.

The maximization of value, which is the economic objective of any serious enterprise,
requires that everyone be a savvy investor of the firm's capital. Software designers have an
essential role to play because they control vast investments in real software assets. They can
perhaps do better if they understand that the informal heuristic concepts they employ, such
as “design for change,” can perhaps be given sound theoretical foundations, and that those
foundations can be used to evaluate heuristics and to reason about their “operational ranges,”
i.e., about when they do and don' t make sense.

Options theory also gave us insights into the strategic value of phased approaches such
Basili and Turner's iterative development and Boehm's spiral model. Each iteration gives us
information and the opportunity to make strategic decisions at the next step, includingthe
decision to cancel the project, or to delay pending resolution of certain unknowns. Earlier
investments yield both productive assets and options, both of which we can now value rigor-
ously.

Finally, the options view made precise the value of investing under uncertainty not only
in prototypes, which resolve uncertainties about the present state of nature, but also in what
we' ll call “wedges:” products that are not currently attractive but that embody options to
exploit lucrative opportunities that might emerge in the future. A wedge is a valuable “foot in
the door” in the form of an option to invest should the future be favorable.

We are obviously not the first to notice that flexibility is of the essence in software design,
and that flexibility has both costs and benefits. Parnas's work on information hiding[26], ease
of extension and contraction [27] and families of systems [25] goes to the heart of the matter,
albeit without explicit appeal to financial concepts. More recently, Fayad and Cline [12], to
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cite just one example, emphasize that design flexibility has costs, that flexibility should be
designed in in those areas where it makes the most economic sense. They identifydesign
patterns[14] as providing the “hinges” that are needed for flexibility in particular dimensions.
They even state that such hinges provide “opportunities” to make future changes that might
be necessary—using a word that clearly reflects a real options mode of thinking.

Nor, obviously, are we the first the employ economics-based approaches to reasoningabout
software design. We have cited several seminal and important works in that area. Much work
has been done in recent years in laying economic foundations for analyzing investmentsin
software reuse, for example.

However, to the best of our knowledge, we were the first to identify real options explic-
itly as a rigorous theoretical foundation for a wide variety of important software design con-
cepts [32]. Shortly after our early paper, Withey published a report [35] in whichhe presents
what is essentially a real-options approach to analyzing investments in reusable assets for
software product lines. By contrast to our work, his is not meant to present the underlying
mathematics rigorously. Also, Withey seeks analysis techniques intended to evaluate specific
reuse projects. That is an important direction for research with obvious and important practi-
cal uses. In this paper, however, we focus on how the rigorous theory of options can helpus to
explain, improve and generate qualitative software design guidelines. It is important to do so
because in practice, software designers rely so heavily on such guidelines. Nevertheless, the
existence of an underlying theoretical foundation is obviously beneficial in that it providess
recourse to those who seek to perform quantitative analyses in specific project contexts.

Before concluding, we emphasize again that we are not proposing a silver bullet. The
optimal decision in any given case obviously has to be evaluated based on estimates of the
relevant parameters. The relevant factors include when the flexibility would be exploited,
the likelihoods of various outcomes, the interest rate, and the costs and benefits andtheir
respective variances. Such parameters can be hard to estimate for real projects. Furthermore,
we have barely scratched the surface of modern options theory. It is known that some problems
in options valuation are computationally intractable. Nor do we want to suggest that options
theory as we have presented it is the only way to interpret software design decision-making
effectively.

A conceptual unification is needed, and we believe that we have shown that options con-
cepts can help to reveal commonalities underlying a range of important softwaredesign con-
cepts. Our goal was to show that there is at least one well developed theory and bodyof
knowledge that we can bring to bear to improve the discourse on software design, andto
improve software design heuristics. We believe we have made progress in that dimension.
However, we also see a potential danger in unjustified borrowing of subtle ideasfrom other
fields. Applications of options thinking to software should of course be done with care and
discrimination.

To conclude, we have made progress toward a theory in terms of which we can justify and
refine a wide variety of important, widely used software design decision-making heuristics
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and concepts. We believe that a variety of useful concepts and practices can beanalyzed
and interpreted in terms of options theory and other economic theories. However,given the
uncertainties involved in introducing new ideas into an established field, wefeel it prudent to
delay investing additional resources until we have more confirmatory evidence of the value of
the basic approach.
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