
34 INSIGHTS • SUMMER 2018 www .willamette .com

Intangible Asset Valuation and Transfer Pricing Thought Leadership

inTroducTion
Many taxing jurisdictions tax the value of com-
mercial taxpayer intangible personal property for
ad valorem taxation purposes. That is, some taxing
jurisdictions tax all of the tangible property and all
of the intangible property of commercial taxpayer
companies. In these taxing jurisdictions, a taxpayer
company’s internally developed computer software
intangible asset would be subject to state and local
ad valorem property taxation.

However, some taxing jurisdictions only tax the
tangible property—that is, the real estate and/or
tangible personal property—of commercial taxpay-
ers. In these jurisdictions, the value of a taxpayer
company’s intangible personal property (including
internally developed computer software) is exempt
from ad valorem property taxation. Commercial
taxpayers in these jurisdictions—especially com-
mercial taxpayers subject to the unit principle of
property valuation—should ensure that the value

of their internally developed computer software is
excluded from the value of the total bundle of assets
subject to property taxation.

This discussion focuses on the valuation of inter-
nally developed computer software as intangible
personal property. There are generally accepted cost
approach, market approach, and income approach
methods that may be used to value internally devel-
oped computer software source code. This discus-
sion focuses on the application of the cost approach,
and, in particular, the replacement cost new less
depreciation (“RCNLD”) intangible personal prop-
erty valuation method.

The RCNLD method is commonly used to value
commercial taxpayer internally developed computer
software source code and associated documentation
and databases.

This discussion (1) describes computer software
and (2) presents an overview of the cost approach,
RCNLD method. For the valuation of computer
software, valuation analysts (“analysts”) may use

Application of the Cost Approach to Value
Internally Developed Computer Software
Connor J. Thurman

In some taxing jurisdictions, the internally developed computer software of a taxpayer
company may be exempt from state and local ad valorem property taxation. In these
situations, the property tax assessment should not include the value of the taxpayer’s
internally developed computer software. Let’s assume that the taxpayer is the type of
company that is subject to property taxation based on the unit principle of property

valuation. In that case, the unit value conclusion typically includes the value of all of the
taxpayer’s tangible property and the value of all of the taxpayer’s intangible property. If
the taxpayer is located in a jurisdiction that taxes tangible property only, then the taxing

authority should adjust the total unit value for the value of any exempt intangible personal
property (such as internally generated computer software). This discussion focuses on

generally accepted methods that valuation analysts may use to value internally developed
computer software for property tax purposes. Specifically, this discussion focuses on the

application of the cost approach, and the replacement cost new less depreciation method, to
value internally developed computer software.

Best Practices Discussion

www .willamette .com INSIGHTS • SUMMER 2018 35

software development effort estimation models to
determine the approximate amount of time required
to replace the subject software. In particular, this
discussion focuses on the COCOMO model and the
SLIM model (defined later in this discussion). This
discussion also presents an illustrative example
of the application of the cost approach, RCNLD
method, to value the taxpayer’s internally developed
software and associated intangible property.

definiTion of compuTer
sofTware for properTy Tax
purposes

Definition of Computer Software
Computer software is sometimes defined as the
programs that tell the computer what to do. The
broadest definition is that software includes every-
thing that is not computer hardware. In Revenue
Procedure 69-21, the Internal Revenue Service (the
“Service”) defines software as follows:

All programs or routines used to cause a com-
puter to perform a desired task or set of tasks
and the documentation required to describe
and maintain those programs. Computer
programs of all classes, for example, operat-
ing systems, executive systems, monitors,
compilers, and translator assembly routines,
and utility programs, as well as applica-
tion programs are included. “Computer soft-
ware” does not include procedures which
are external to computer operations, such as
instructions to transcription operators and
external control procedures.1

Determining if the Subject Computer
Software Is Taxable

The determination of whether computer software
is intangible personal property is sometimes the
subject of controversy in the property tax discipline.

State taxing authorities have attempted to
address this issue. These attempts have resulted in
an inconsistent collection of state-specific rules and
methods by which analysts and tax advisers contend
for guidance in determining what portion (if any) of
a taxpayer’s computer software assets is taxable and
what portion is exempt from property taxation.

When valuing computer software for property tax
purposes, it may be important to determine whether
the subject software is taxable or tax exempt. Most
taxpayer companies own and operate software that
has been either:

1. purchased from a seller and optimized for
the taxpayer operations or

2. internally developed by the taxpayer infor-
mation technology (“IT”) personnel.

Some states assess property taxes on internally
developed computer software. Virginia, for example,
specifically defines “computer application software”
as taxable intangible personal property.2

In general, most states do not tax intangible
personal property. Therefore, taxpayer companies
take the position that the source code and related
documentation of the computer software is intan-
gible personal property and should be exempt from
property taxation.

Three general lines of reasoning have been
devised by state courts and taxing authorities to
determine whether software source code is either
tangible personal property or intangible personal
property:

1. Whether the taxpayer company purchased
a tangible storage medium versus the intan-
gible knowledge contained within

2. Whether the subject computer software is
operating (or “operational”) software or
application software

3. Whether the subject computer software is
internally developed or “bundled”

Line of Reasoning One
The first line of reasoning, which we may call the
“container test,” focuses on a substance-over-form
inquiry involving two components:

1. A physical storage medium (e.g., a compact
disc, digital versatile disc, or a magnetic
tape)

2. The knowledge and/or information con-
tained on the storage medium

Intangible information in this context refers to
the digital manifestation of human knowledge in the
form of computer code, which instructs a micropro-
cessor to perform computational tasks that alter and
communicate this intangible information.

In the early years of computing, taxing authori-
ties sought to characterize software by the tangible
medium in which it was stored and distributed. The
container test examined:

1. whether the intangible information (that
is, the computer code) contained within a
tangible medium is a significant factor for
property tax purposes and

36 INSIGHTS • SUMMER 2018 www .willamette .com

2. whether the tangible medium may be con-
sidered incidental to the purchase of that
intangible information.

The container test may be less relevant in the
modern computing environment. This is because
the use of a tangible storage medium for software
distribution has declined, and software source code
is directly downloaded to computers or accessed
on demand from servers in a cloud network. These
methods of software distribution have made many
forms of physical distribution unnecessary.

An example of the application of container test
occurred in 1996 when the Texas Court of Appeals
ruled that computer software was considered intan-
gible property, and, therefore, not subject to ad
valorem property taxation.3

That court ruled that the computer software was
intangible because the “essence of the transaction”
was not in the tangible medium that was used to
transport the computer software to the consumer
(for example a disk or CD-ROM) but rather the com-
puter software that it contained.

“Computer application software,” the court rea-
soned, is considered intangible personal property
consisting of unperceivable binary pulses, programs,
routines, and symbolic mathematical code that con-
trol the function of computer hardware and direct
hardware operations; therefore, it was not subject
to ad valorem property taxation as tangible personal
property.

Line of Reasoning Two
A number of states have emphasized a second line
of reasoning that focuses on how separable the com-
puter software is from the computer hardware on
which it operates. Some states insist that computer
software is essentially inseparable from the tangible
hardware on which it operates.

The Ohio Supreme Court, for example, upheld
the Ohio Department of Taxation position that all
computer software was subject to property taxation
under the reasoning that the coded instructions are
always stored in some form of physical memory—a
tangible medium— when operating in a computer.4

Therefore, in Ohio, all internally developed
computer software may be subject to ad valorem
property taxation.

In other states, the issue of the ability to sepa-
rate computer software from the computer on which
it operates usually takes the form of classifying com-
puter software as either:

1. operating computer software or

2. application computer software.

Operating computer software is generally
required in order for the computer to function
properly. Sometimes operating computer software
is described as “embedded” software or “firmware.”
This label is based on the fact that the computer
software is coded into memory chips attached
directly to the circuit board of a computing device.

A laptop computer contains embedded software
in the form of a basic input output system (“BIOS”).
A BIOS is permanently stored in a memory chip
on a computer motherboard (the primary circuit
board). It is automatically executed when the com-
puter is turned on.

The BIOS serves as the fundamental operating
system (“OS”) for managing the microprocessor(s)
on the motherboard and the peripheral devices that
attach to the motherboard. For a laptop computer,
these attached devices may include a hard drive, a
video graphics card, a keyboard, and a touchpad.

Depending on the taxing jurisdiction, however,
operating software may have a more expansive
definition that includes a general-purpose OS that
works in conjunction with the BIOS.

The Kansas Department of Revenue describes
the distinction between operating software and
application software as follows:

The Kansas Supreme Court has held that
software programs are taxable if they are
operational programs; programs the com-
puter cannot operate without. These pro-
grams are considered an essential portion
of the computer hardware and are taxable
as tangible personal property in conjunc-
tion with the hardware. On the other hand,
application programs, which are particular-
ized instructions, are intangible property,
which is not subject to taxation in Kansas.5

Further, the California State Board of Equalization
states as follows:

In general, software is classified as
nontaxable property. The one exception
to this general rule is software that is
considered a “basic operational program”
or “control program.” These terms refer to
a computer program that is fundamental
and necessary to the functioning of a
computer. All other software (sometimes
called application software) is nontaxable.
But if the application software comes
bundled with the computer hardware or
other equipment at a single price and the
taxpayer does not provide the assessor with
information that will enable the assessor
to separately estimate its value, then the

www .willamette .com INSIGHTS • SUMMER 2018 37

assessor may consider the total bundled
price as indicative of the value of the
taxable tangible property.6

As a simple illustration, a laptop computer
first executes a BIOS when the laptop computer is
turned on. In some taxing jurisdictions, this BIOS
may be considered tangible personal property that
is subject to property taxation. Once the laptop
computer has started operating, a user may choose
to execute an application such as Microsoft Office.

Microsoft Office may qualify as tax-exempt appli-
cation software. This is because it executes “on top”
of the BIOS and is not required for the computer to
operate (the laptop will function normally regardless
of whether Microsoft Office is installed). The classi-
fication of the Windows OS, which also executes on
top of the BIOS, as taxable operating software or as
tax-exempt application software may vary by taxing
jurisdiction.

This interplay of embedded operational software
and general purpose operating systems may lead
to complicated tax rules. The operating software/
application software dichotomy offers a useful
guideline, but it is only a general guideline. Not all
operating software is subject to property tax and not
all application software is tax exempt.

The analyst should perform sufficient due dili-
gence to determine whether the subject software is
subject to property tax or is tax exempt.

Line of Reasoning Three
The third and final line of reasoning classifies com-
puter software as either:

1. computer software that is developed for
internal use or

2. computer software that is developed for
commercialization (that is, for resale)—
“bundled” computer software.

Bundled computer software typically includes
computer software that is licensed to others and
may be held by the developer as inventory.

Under some state property tax statutes, inter-
nally developed software is taxed, while bundled
software is not.

An example of bundled software is the Microsoft
Office computer software suite. If company ABC
purchases Microsoft Office along with a new laptop
computer, the value of Microsoft Office ordinarily
would not be included in the tax base (let’s assume
that the taxing jurisdiction exempts bundled com-
puter software), while the value of the laptop com-
puter would be included as tangible property.

This concept is fairly consistent with the opera-
tional software/application software dichotomy. The
distinction in this line of reasoning becomes more
evident if one considers that company ABC may be
taxed on its laptop computer software if it instead
internally develops an application with word pro-
cessing and other office productivity features.

Taxability, under the third line of reasoning,
depends on the issue of customization, not on
whether the software is application software.

In practice, discerning between internally devel-
oped software and bundled software may be difficult.
It may be difficult to determine taxability of the sub-
ject computer software when the analyst considers
the many ways in which software can be created,
modified, and distributed. If a software developer is
tasked to create software for a particular customer’s
needs that will not be resold to others, it may be
considered internally developed software.

However, if the developer creates the software
for a chain of franchise businesses and then licenses
the software individually to 100 franchisees, some
taxing jurisdictions may classify the computer soft-
ware as having been developed for commercializa-
tion. This may be true even though the customers
belong to the same franchise chain.

compuTer sofTware VaLuaTion
approaches and meThods

There are three generally accepted intangible per-
sonal property valuation approaches. These three
generally accepted valuation approaches are sum-
marized below.

1. Cost Approach—The cost approach esti-
mates the value of an intangible personal
property as the cost (in terms of current
dollar expenditures) required to create an
intangible asset with equivalent utility and
functionality as the subject asset. Analysts
typically consider the following cost com-
ponents in a cost approach analysis: direct
costs, indirect costs, developer’s profit, and
entrepreneurial incentive.

 If the replacement asset is superior to
the subject asset, then allowances may be
made for the various forms of obsolescence,
including functional (including technologi-
cal) obsolescence and external (including
economic) obsolescence.

2. Market Approach—The market approach
estimates the value of an intangible per-
sonal property based on valuation pricing
multiples derived from arm’s-length sale or

38 INSIGHTS • SUMMER 2018 www .willamette .com

license transactions involving either compa-
rable or guideline intangible assets. Typically,
individual intangible assets are not bought
and sold in fee simple interest. Accordingly,
individual intangible asset sale transactional
data are not often readily available.

 However, many intangible assets (such
as trademarks, copyrights, and patents) are
licensed in arm’s-length transactions. When
available, these transactional data may be
used to prepare a market approach analysis.

3. Income Approach—The income approach
recognizes the prospective revenue, expens-
es, profitability, and investments associated
with the ownership of an intangible per-
sonal property. This approach estimates the
value of an intangible asset as the present
value of future income. That income may be
defined as operating income, net income,
net cash flow, operating cash flow, or some
other measure of income, and it may be
estimated over the asset’s expected remain-
ing useful life (“RUL”).

 This expected income stream is brought
to a present value by the use of an appro-
priate market-derived, risk-adjusted rate of
return.

This discussion will focus on the application
of the cost approach, and specifically the RCNLD
method.

cosT approach
The cost approach is based on valuing software
based on some measure of cost. The common
types of cost that may be estimated within the cost
approach include the following:

1. The reproduction cost new (“RPCN”)

2. The replacement cost new (“RCN”)

The RPCN reflects the cost to recreate an exact
replica of the subject software. The RPCN refers to
the cost to create the functionality or utility of the
subject software, in a form that is identical to the
subject software.

Functionality refers to the ability of the sub-
ject software to perform the task for which it was
designed. Utility refers to the ability of the subject
software to provide an equivalent amount of satisfac-
tion to the user or beneficiary of the subject software.

The RCN refers to the cost to create the func-
tionality or utility of the subject software, but in a
form or appearance that may be quite different from
the subject software.

While the replacement software performs the
same task as the subject software, the replacement
software is often superior (in some way) to the
subject software. That is, the replacement software
may yield more satisfaction. If this is the case, the
analyst may adjust for this factor in an obsolescence
estimation.

Adjustments for obsolescence are discussed
below.

Two methods that may be used to estimate the
RPCN or RCN of computer software are (1) the
trended historical cost method and (2) the software
engineering development effort estimation model
method.

The Trended Historical Cost Method
In this method, actual historical software develop-
ment costs are identified and quantified. These
actual costs are then “trended” through the valu-
ation date by an appropriate inflation-based index
factor. The analyst ordinarily may include all costs
associated with the development of the subject
software.

An allocation of taxpayer company overhead
costs and the cost of employee fringe benefits ordi-
narily may be included in addition to employee pay-
roll costs if the taxpayer personnel are employed in
tasks related to the software development.

Historical costs ordinarily may include an allow-
ance for the software developer’s profit on the
software development project, an allowance for
entrepreneurial incentive to motivate the software
development project, all direct development costs
such as salaries and wages, and all indirect develop-
ment costs, such as taxpayer company overhead
and employment taxes/employee benefits.

The application of the trended historical cost
method typically estimates the RPCN of the sub-
ject software. In many cases, due to technological
advances in programming languages or program-
ming tools, for example, the RCN for the subject
software may be lower than the RPCN for the sub-
ject software.

Software Engineering Development
Effort Estimation Models

The analyst may employ software engineering devel-
opment effort estimation models in order to esti-
mate either the RPCN or the RCN of the taxpayer
internally developed software. Generally, software
engineering development effort measurement mod-
els were originally developed to assist software
developers in estimating the effort, time, and human
resources needed to complete a software project.

www .willamette .com INSIGHTS • SUMMER 2018 39

These models have been adapted by
analysts for internally developed soft-
ware valuation purposes.

The primary input to the software
engineering cost estimation models is
a size-related metric. Capers Jones, an
authority in the field of software cost
estimation, observed: “Every form of
estimation and every commercial soft-
ware cost-estimating tool needs the
sizes of key deliverables in order to
complete an estimate.”7

Jones lists six types of sizing:

1. Sizing based on lines of code

2. Sizing by extrapolation from
function point analysis

3. Sizing by analogy with similar
products of known size

4. Guessing at the size using
“project manager’s intuition”

5. Guessing at the size using “programmer’s
intuition”

6. Sizing using statistical methods or Monte
Carlo simulation8

Historically, the most common sizing metric has
been the number of software program lines of code.
The definition of a line of code and the associated
line of code counting conventions vary among the
common software engineering development effort
estimation models.

A common definition of a line of code is as source
code instructions (i.e., instructions as written by
human programmers) or object code instructions
(what the computer produces after it has compiled,
or translated, the source code into instructions the
computer can more directly process).

Lines of code have meaning only within the
context of the computer language being employed.
Languages have evolved over time and can be clas-
sified into generations. As a general observation,
higher-generation languages (i.e., more modern
programming languages) require less source code
to perform the same tasks than lower-generation
languages.

The valuation of internally developed software
can also be developed using different base size units
than source lines of code. Examples of these include
both function points and object points.

Two common software engineering development
effort estimation models are the following:

1. The Constructive Cost Model (“COCOMO”)
and its derivatives

2. The Software Lifecycle Management
(“SLIM”) model

These software engineering development effort
estimation models are considered “algorithmic”
models because they generate effort estimates using
a set of quantified inputs, such as lines of source
code, which is processed automatically in accor-
dance with metrics and formulas derived from the
empirical analysis of large databases of actual soft-
ware projects.

Typically, the software engineering development
effort estimation models calculate an estimate of the
effort required to develop a software system in terms
of person-months. The number of person-months is
multiplied by a blended cost per person-month to
arrive at the indicated value of the software.

The blended cost per person-month is typically a
full absorption cost (e.g., the cost of a software pro-
grammer would include benefits, wages, applicable
overhead, etc.).

Additional software engineering develop-
ment effort estimation models include (1) the
KnowledgePlan (“KPLAN”) model and (2) the SEER
for Software (“SEER-SEM”) model.

KPLAN
KPLAN is a proprietary function point-driven model
that incorporates a historical knowledge database
of project data derived from over 11,000 computer
software projects that have been collected and
researched by Software Productivity Research, LLC
(“SPR”).

The specific algorithms utilized by KPLAN have
not been fully disclosed. The model uses functional

40 INSIGHTS • SUMMER 2018 www .willamette .com

metrics to derive predictive/analytical productiv-
ity rates given a significant number of known (or
assumed) parameters. Projects are classified by,
among other things, scope (e.g., program or applica-
tion, subsystem), topology (e.g., stand alone, client/
server), class (e.g., end-user developed, IT devel-
oped), and type (e.g., interactive graphical user
interface, multimedia).

The size of the software system can be expressed
in multiple ways, including function points or lines
of code, by language. The analyst assigns attribute
values that describe the personnel, technology, pro-
cess, environment, and product.

KPLAN was updated in 2011 with the release of
version 4.4. However, SPR ceased support for the
software engineering development effort estimation
model. The model is still available for download
from various software archive websites.

SEER-SEM
SEER-SEM is an algorithmic project management
tool designed to estimate, plan, and monitor the
estimated effort and resources necessary for com-
puter software development/maintenance projects.
SEER-SEM is actually a group of models working
in concert to provide estimates of effort, duration,
staffing, and defects.

The following is a list of the specific SEER-SEM
models and the questions they address:

1. Sizing (how large is the project?)

2. Technology (how productive are the devel-
opers?)

3. Effort and Schedule Calculation (what
amount of effort and time is needed?)

4. Constrained Effort/Schedule Calculation
(how does the expected outcome change
with constraints?)

5. Activity and Labor Allocation (how should
tasks and labor be allocated?)

6. Cost Calculation (given effort, duration, and
labor, how much will the project cost?)

7. Defect Calculation (what is the expected
quality of the delivered computer soft-
ware?)

8. Maintenance Effort Calculation (how much
maintenance will be required?)

9. Progress (how is the project progressing and
is it on track to target completion?)

10. Validity (is the project feasible based on the
technology involved?)

The current version of SEER-SEM (version 7.3)
is the first version of the model to incorporate all

stages of the project estimate’s life cycle. The model
relies on parametric modeling that also utilizes a
database of over 20,000 historical software projects
to estimate required project effort and resources.

This discussion focuses on the application of the
COCOMO model and the SLIM model.

COCOMO
The first generation of COCOMO was developed
in the 1980s. COCOMO was developed by Barry
W. Boehm, PhD, and is described in Software
Engineering Economics.9

This development effort estimation model proj-
ects the amount of effort required to develop the
software, taking into consideration the size of the
programs, the program characteristics, and the
environment in which they are to be developed.

Boehm defined an effort equation in the basic
COCOMO model that estimates the number of
person-months to develop a software product as
a function of delivered source instructions. This
person-month estimate includes all phases of the
development from product design through integra-
tion and testing, including documentation.

Delivered source instructions include job control
language, format statements, and data definitions.
These delivered source instructions do not include
comments. The basic COCOMO model allows for
three different software development modes, with a
specific effort equation provided for each develop-
ment mode.

Boehm also introduced the intermediate
COCOMO model, which refined the basic COCOMO
model by introducing 15 cost drivers with associ-
ated effort multipliers. The product of these multi-
pliers is defined as the effort adjustment factor.

The intermediate COCOMO model modified the
three effort equations of the basic COCOMO model
by:

1. adjusting the coefficients in the equations
and

2. including the effort adjustment factor as a
variable in the equations.

A more updated model, COCOMO II, was devel-
oped by researchers at the University of Southern
California (“USC”).10

The updated model supports the effort estimation
of a variety of third and fourth generation language-
based projects. It also incorporates function point
analysis as well as adds two new effort drivers. An
online estimation tool encompassing the COCOMO
II model is available through the USC Center for
Systems and Software engineering website.11

www .willamette .com INSIGHTS • SUMMER 2018 41

COCOMO II actually consists of three separate
models. The most recent and detailed of the three
models is the COCOMO II.2000 post-architecture
model.

The post-architecture model allows for increased
effort due to breakage (i.e., code thrown away due to
volatility in project requirements) and for automati-
cally translated and adapted lines of code.

We will provide an illustrative example of a cost
approach valuation analysis using COCOMO II later
in this discussion.

The post-architecture software development equa-
tion defined by the COCOMO II model is as follows:

PM = A × (KNSLOC)E × П EM

where:

 PM = Person-months of estimated effort

 A = 2.94, the effort coefficient

KNSLOC = Thousands of new source lines of
 code

 E = The scaling exponent for effort, a
 function of the scale factors

 П EM = The product of the 17 effort multi-
 pliers associated with the cost
 drivers

The scaling exponent E is calculated as follows:

E = B + (0.01 × Σ SF)

where:

 B = 0.91, the scaling base-exponent for effort

Σ SF= The sum of the five scale factors

A third model, COCOMO III, is currently being
developed by USC and its project partners with the
aim of improving the model with new and updated
software cost drivers and new development para-
digms.

SLIM
The SLIM software engineering development effort
model was developed by Lawrence Putnam, the
founder of Quantitative Software Management, Inc.
(“QSM”). QSM licenses various software develop-
ment effort estimation tools incorporating the model.

The SLIM model (also referred to by commen-
tators and in academic literature as the “Putnam
model”) estimates the amount of effort in person-
months required to develop software based on the
following parameters:

1. A project size build-up parameter (a num-
ber representing a range from entirely new
software to rebuilt software)

2. The software delivery time

3. The effort required to create the computer
software

4. The expected rate of defective software

5. A productivity environment factor

The SLIM model utilizes a knowledge base of
project data derived from over 13,000 software
projects that have been collected and researched
by QSM. The SLIM model is regularly updated in
order to provide accurate estimates as technology
improves.

The SLIM model allows users to specify the given
computer software project’s environment by identi-
fying the industry function for which that computer
software will be used. The SLIM model utilizes a
primary trend group to benchmark the subject soft-
ware against the QSM industry database and com-
pares software development projects.

The QSM primary trend groups include (1) all
systems, (2) microcode and firmware, (3) real time,
(4) system software, (5) command and control, (6)
telecommunications, (7) scientific, (8) process con-
trol, (9) business, (10) real time, (11) engineering,
(12) business agile, (13) business financial, (14)
business government, (15) business web, and (16)
package implementation.

The SLIM model also allows users to alter their
software development estimates based on various
sizing units. The base size unit is source lines of
code.

This discussion presents an illustrative develop-
ment effort estimation analysis output using the
SLIM model below.

Source Lines of Code Adjustments
As discussed previously, the software engineer-
ing development effort estimation model method
often relies on an input of source lines of code to
determine the amount of effort needed to replace
the internally developed software. The analyst may
need to make adjustments to company-provided
source lines of code.

These adjustments may include (1) removing
copybook lines of code, (2) determining any differ-
ences between “actual” and “ideal” source lines of
code, and (3) adjusting physical source lines of code
to reflect logical executable lines of source code.

Copybook Lines of Code
In an effort to reduce the amount of time to write
large quantities of code, software developers may
use copybooks as a way to limit the amount of dupli-
cate code that needs to be written for a particular

42 INSIGHTS • SUMMER 2018 www .willamette .com

program. Copybooks may be written once and then
copied into the source lines of code for multiple
programs.

If the analyst included all copybooks found in
any internally developed software, the number of
source lines of code may be overstated.

The analyst may make an effort to determine
how many copybook lines of code are original (i.e.,
written) and how many copybook lines of code are
duplicative (i.e., copied). The analyst may reduce
the source lines of code to include only the origi-
nally written copybook lines of code.

Actual and Ideal Source Lines of Code
The analyst may encounter internally developed
software that would not be written in the same
language if replaced or may simply be written more
efficiently if replaced. These cases may be classified
as “actual” and “ideal” lines of code.

The adjustment for differences between “actual”
and “ideal” source lines of code may be a result of
individual software developer style or differences in
the programming language used.

When performing an RCN analysis, the analyst
may determine which, if any, programs would be
written in a higher-generation language (which
tends to be more efficient and requires less written
code) and whether or not those programs would be
replaced using fewer source lines of code.

Physical Executable to Logical Executable
Source Lines of Code

The specific line of code size measure used by both
COCOMO II and SLIM is logical executable lines of
code. In order to define logical executable lines of
code, the following paragraphs explain:

1. the difference between logical and physical
lines of code and

2. the difference between executable and non-
executable lines of code.

A physical line of code may be thought of as:

1. one line as typed by a programmer (i.e.,
before deliberately beginning a new line) or

2. one printed line on a program listing.

A logical line of code can be thought of as one
logical program instruction. Many programming lan-
guages allow the programmer to spread one logical
program instruction over two or more physical lines.

Some programming languages allow the pro-
grammer to place two or more logical program

instructions on the same physical line. Therefore,
the number of logical lines of code in a program is
generally less than the number of physical lines of
code in that program.

Executable lines of code are those lines of code
that are ultimately executed when the program is
run (though the source lines of code will first be
converted to machine code). Examples of nonex-
ecutable lines of code are comment lines and blank
lines. In other words, the program would run in the
same manner regardless of the number of comment
lines and blank lines.

The use of logical executable lines of code reduc-
es the effect of programmer style on the number of
source lines of code, focusing instead on the func-
tionality of the source lines of code.

If necessary, the analyst may adjust physical
lines of code to reflect logical executable lines of
code.

obsoLescence adJusTmenTs
When valuing internally developed software for
property tax purposes, the analyst should make any
necessary adjustments for all forms of obsolescence.
Adjustments are made to the various cost estimate
in order to account for losses in value resulting
from:

1. physical deterioration,

2. functional obsolescence, and

3. external obsolescence.

These three types of property obsolescence are
summarized below:

1. Physical deterioration is a loss in value of
the taxpayer operating assets brought about
by wear and tear, action of the elements,
disintegration, use in service, and all physi-
cal factors that may reduce life and service-
ability.

2. Functional obsolescence is the loss in value
of the taxpayer operating assets caused
by the inability of the subject property to
adequately perform the function for which
it is utilized. Functional obsolescence is,
therefore, internal to the subject property.
Functional obsolescence is often related to
such factors as property superadequacies,
excess property operating costs, and prop-
erty inadequacies.

3. External obsolescence is a loss in value
of the taxpayer operating assets caused
by external forces, such as changes in
the supply/demand relationship, legislative

www .willamette .com INSIGHTS • SUMMER 2018 43

enactments, and other external factors.
Those other external factors may include
industry and local economic conditions that
affect the value of the subject property.

In the valuation of internally developed soft-
ware, all forms of obsolescence may be considered.
Functional obsolescence may not be evident in
taxpayer software that is properly maintained.
However, the analyst may consider the extent of any
functional obsolescence.

When a reproduction cost new method, such as
the trended historical cost method, is used to value
software, technological obsolescence can be signifi-
cant. This factor is due to increasing productivity
and technological advances over time.

The use of a replacement cost new method
typically eliminates the productivity-related tech-
nological obsolescence. However, other adjustments
for technological obsolescence may be necessary.
Economic obsolescence usually has more relevance
with respect to product software. However, this form
of obsolescence may be examined in the valuation of
operational software as well.

Although the value of tangible personal property
is often estimated using depreciation schedules,
properly maintained computer software does not
become obsolete in any predictable, continuous
way.

Software value tends to vary over time by
a relatively small amount due to (1) increasing
productivity/technological advances, on the one
hand, and (2) increasing labor costs and software
enhancements, on the other hand, until the (usually
unpredictable) point in time that its replacement is
contemplated, for any number of reasons.

Therefore, any attempt to estimate obsolescence
for properly maintained software by “depreciating”
it over some finite time period may be unsupport-
able.

Remaining Useful Life Analysis
The estimation of the RUL may be an important
consideration in each of the three generally accept-
ed approaches to software valuation. In the cost
approach, an RUL analysis may be performed in
order to estimate the total amount of obsolescence,
if any, from the estimated measure of cost—that
is, either reproduction cost, replacement cost, or
trended historical cost.

The analyst’s assessment of RUL may have a
measurable effect on the value of the software.
Normally, a longer RUL would indicate a higher
value for the subject taxpayer software. And, a

shorter RUL would indicate a lower value for the
subject taxpayer software.

Cost per Person-Time
The cost per person-time (where time is measured
in hours, months, or years) is a full absorption
cost. That cost includes the average base salary of
the software development team and other factors.
These other factors include, but are not limited to,
perquisites, payroll taxes, employee benefits (life,
health, disability, and dental insurance, pension
plans, and continuing education), and an allocation
of overhead (which includes secretarial support,
office space, computer use, supplies, marketing,
management, and supervisory time).

The analyst may gather information regarding
the number of software development employees,
their job grades or level, as well as job titles within
the IT department, and the average salary by job
title. The analyst may also require data regarding
the various overhead factors, such as retirement
plans, medical and life insurance, company pen-
sion plan contribution, and salary incentives and
bonuses.

The analyst may also have to make necessary
adjustments for (1) developer’s profit and (2) entre-
preneurial incentive into the full absorption cost
estimate. A discussion of these adjustments follows.

Developer’s Profit
Developer’s profit is the expected return an intan-
gible asset developer expects to receive over the
direct and indirect costs (including materials, labor,
and overhead) related to the asset development.12
The analyst may estimate the developer’s profit as
a percentage return on the taxpayer’s investment
in direct and indirect costs to replace the internally
developed software systems.

The analyst may utilize selected guideline pub-
licly traded companies in the computer program-
ming services industry to identify a reasonable
developer’s profit. One method of analysis is to
compare the operating profit margins of a selection
of guideline publicly traded companies.

Since the operating profit margin is based on a
return on sales and the developer’s profit is based
on the cost of development, the analyst may convert
the selected operating profit margin to a developer’s
profit margin using the following formula:

 Operating profit margin

÷ (1 – Operating profit margin)

= Developer’s profit margin

44 INSIGHTS • SUMMER 2018 www .willamette .com

The developer’s profit margin that is the result
of this formula is a percentage that is applied to the
direct and indirect cost of development to calculate
the total direct cost, indirect cost, and developer’s
profit. An example of this calculation follows.

Operating profit that is 7.7 percent greater than
the total cost of development is mathematically
equivalent to a profit margin of 7.1 percent (minor
differences are due to rounding). If a developer
incurred total direct and indirect development costs
of $100.00, the developer would require income of
$107.70 (i.e., $7.70 of profit) to achieve an operat-
ing profit margin of 7.1 percent.

In this example, the operating profit margin is
calculated as $7.70 of profit divided by $107.70 of
total income.

Entrepreneurial Incentive
The analyst may also estimate an entrepreneurial
incentive cost component by considering the fol-
lowing:

1. A rate of return, as indicated by the tax-
payer management

2. The estimate of the amount of time required
to replace the subject internally developed
software, as indicated by the subject tax-
payer management

3. The sum of the estimated software devel-
oper’s profit and direct and indirect replace-
ment costs incurred during the estimated
time required to replace the internally
developed computer software

The entrepreneurial incentive considers man-
agement estimates of the time required to replace
the subject internally developed software.

iLLusTraTiVe sofTware
VaLuaTion exampLe

Let’s assume that Omega Gas Transmission Company
(“Omega”) is an intrastate natural gas pipeline com-
pany. Omega is assessed in its taxing jurisdiction
based on the unit principle of property valuation.

Let’s assume that the assessor values the Omega
total unit of operating property at $100 million as of
January 1, 2018.

Let’s assume that intangible personal property is
exempt from property taxation in the subject taxing
jurisdiction. Omega owns internally developed com-
puter software that is used to operate its compressor
stations and its pipeline operations.

Omega retained an analyst to estimate the value
of this internally developed software so that the
taxpayer can remove the value of that intangible
personal property from the total unit value.

The analyst decided to use the cost approach
and the RCNLD method to estimate the value of the
Omega subject software as of January 1, 2018.

To simplify this illustrative example, let’s assume
that computer software is the only intangible per-
sonal property that is owned and operated by
Omega as of January 1, 2018.

Summary of Exhibits
Exhibit 1 presents the summary of the RCNLD
value indications using several software engineering
development effort estimation models.

Exhibit 2 presents the full absorption cost per
person-month used in the valuation of the Omega
computer software. This analysis includes associ-
ated direct and indirect costs, as well as the selected
developer’s profit and entrepreneurial incentive
applicable to the Omega software development per-
sonnel.

Exhibit 3 presents the effort multiplier and scal-
ing exponent factors used in the COCOMO II soft-
ware development effort estimation formula.

Exhibit 4 presents the cost driver ratings and
associated effort multipliers and scaling exponent
factors attributable to the subject taxpayer software
programs.

Exhibit 5 presents the application of the
COCOMO II model in determining the person-
months required to replace the subject software.

Exhibit 6 presents the application of the SLIM
model in determining the person-months required
to replace the subject taxpayer software.

Cost Approach—Replacement Cost
New less Depreciation Method

The simplified process of how the analyst performs
the valuation of the Omega software is as follows:

1. The analyst is provided the COCOMO vari-
ables that correspond to each software
program in the subject Omega software, as
presented in Exhibit 4.

2. The analyst matches the provided COCOMO
variables for each software program to the
values in the COCOMO equation, as pre-
sented in Exhibit 3.

3. The analyst is provided with the SLIM pri-
mary trend group for each software program

www .willamette .com INSIGHTS • SUMMER 2018 45

in the subject Omega software, as presented
in Exhibit 6.

4. The analyst is provided with logical execut-
able source lines of code for the subject
software, as presented in Exhibits 5 and 6.

5. The analyst inputs the indicated effort
multiplier and scaling exponent, and the
provided logical executable lines of source
code into the COCOMO II post-architecture
equation to determine the person-months
to replace each software program, as pre-
sented in Exhibit 5.

6. The analyst inputs the logical executable
source lines of code for each of the software
programs into the SLIM model to determine
the person-months to replace the program,
as presented in Exhibit 6.

7. The analyst makes an adjustment for the
obsolescence to any software programs that
are scheduled to be retired, as presented in
Exhibits 5 and 6. The functional obsoles-
cence adjustment is based on the expected
retirement date and the RUL of the software
program.

8. To simplify this illustrative example, let’s
assume that there is no economic obsoles-
cence related to the Omega total unit of
operating property. Therefore, the analyst

does not have to apply any economic obso-
lescence adjustment to the cost approach
valuation of the software intangible per-
sonal property.

9. The analyst estimates the subject computer
software person-month development effort
based on the average of the RCNLD devel-
opment effort in person-months indications
from the two software engineering develop-
ment effort estimation models: COCOCO II
and SLIM, as presented in Exhibit 1.

10. The analyst is provided with the head count
and associated costs related to the Omega
software development personnel, as pre-
sented in Exhibit 2.

11. The analyst applies a 5 percent developer’s
profit and a 12 percent entrepreneurial
incentive to reflect the profit motive and
opportunity cost associated with developing
the subject Omega software, as presented in
Exhibit 2.

12. The analyst calculates the full absorption
cost per person-month, as presented in
Exhibit 2.

13. The analyst multiplies the full absorption
cost and the average development effort
in person-months (estimated using the
software engineering development effort

Replacement Cost New
Exhibit less Depreciation

Replacement Cost New less Depreciation Development Effort Component Reference Component

COCOMO Model Person-Month Development Effort Estimate (net of obsolescence) [a] 5 2,487 Months
SLIM Model Person-Month Development Effort Estimate (net of obsolescence) [a] 6 1,128 Months
Selected Subject Software Person-Month Development Effort Estimate [b] 1,807 Months

Subject Software Person-Month Development Effort Estimate 1,807
Full Absorption Cost per Person-Month 2 12,700$

Subject Software Replacement Cost New less Depreciation Indication 22,954,945$

Subject Software Value (rounded) 23,000,000$

[a] For purposes of this simplified illustrative example, economic obsolescence is assumed to be 0 percent.
[b] Average of COCOMO indicated person-months and SLIM indicated person-months.
Sources: As indicated above.

Exhibit 1
Omega Gas Transmission Company
Internally Developed Computer Software
Cost Approach
Replacement Cost New less Depreciation Method
Valuation Summary
As of January 1, 2018

46 INSIGHTS • SUMMER 2018 www .willamette .com

estimation models) to arrive at the RCNLD
of the subject Omega software, as presented
in Exhibit 1.

As presented in Exhibit 1, the analyst concludes
that, based on the estimated effort, the value of the
Omega internally developed software, as of the valu-
ation date, is $23 million (rounded).

effecT on The properTy Tax
assessmenT

The value of the Omega total unit of operating
property—that is, tangible property and intangible
property—was estimated as $100 million. However,
this total unit value included the value of the subject
software intangible personal property.

As presented in Exhibit 1, the value of the sub-
ject software was $23 million as of the valuation
date. Subtracting the value of the subject software
intangible personal property yields a value of $77
million ($100 million total unit value less $23 mil-
lion intangible personal property) in order to con-
clude the $77 million value of the Omega taxable
tangible property as of January 1, 2018.

Therefore, the software valuation analysis result-
ed in properly reducing the Omega property tax
assessment by more than 20 percent.

Notes:
1. Rev. Proc. 69-21, 1969-2 C.B. 303.

2. Rulings of the Tax Commissioner, Virginia
Department of Taxation, Document 13-47, (April
4, 2013).

Software
Development

Software Development Actual Cost Components Personnel

Actual Headcount: 132

Actual Costs:
Salaries 10,500,000
Employee Benefits 2,625,000
Bonuses 525,000
Overhead 3,412,500
Total Actual Annual Cost 17,062,500

Monthly Cost per Person:
Total Actual Annual Cost 17,062,500
Divided by: Headcount 132
Annual Cost per Person 129,261
Divided by: 12 Months 12
Direct and Indirect Cost per Person-Month 10,772
Computer Software Developer's Profit [a] 5%
Direct Cost, Indirect Cost, and Developer's Profit per Person-Month 11,310

Direct Cost, Indirect Cost, and Developer's Profit Cost per Person-Month 11,310
Entrepreneurial Incentive as a Percent of Direct Cost, Indirect Cost, and Developer's Profit [a] 12%
Full Absorption Cost per Person-Month 12,668

Full Absorption Cost per Person-Month (rounded) 12,700

[a] Determined by the analyst (details not presented).
Source: Taxpayer-provided costs and headcount and analyst calculations.

Exhibit 2
Omega Gas Transmission Company
Internally Developed Computer Software
Cost Approach
Replacement Cost New less Depreciation Method
Software Development Personnel
Full Absorption Cost per Person-Month
As of January 1, 2018

www .willamette .com INSIGHTS • SUMMER 2018 47

3. See Dallas Cent. Appraisal Dist. v. Tech Data, 930
S.W.2d 119 (Tex. App. 1996).

4. See Andrew Jergens Company v. Tax Commr.,
848 N.E.2d 499 (Ohio 2006).

5. See https://law.justia.com/cases/kansas/supreme-
court/1986/58-619-1.html.

6. See https://www.boe.ca.gov/proptaxes/embed-
ded_software.htm.

7. Capers Jones, Estimating Software Costs:
Bringing Realism to Estimating, 2nd ed. (New
York: McGraw-Hill, 2007), 8.

8. Ibid., 9.
9. For a detailed description of COCOMO, see Barry

W. Boehm, Software Engineering Economics
(New York: Prentice-Hall, 1981).

10. For a detailed description of COCOMO II, see
Boehm et al., Software Cost Estimation with

COCOMO II (New York: Prentice-Hall PTR,
2000).

11. See http://sunset.usc.edu/csse/research/
COCOMOII/cocomo_main.html.

12. Robert F. Reilly and Robert P. Schweihs, Guide to
Intangible Asset Valuation (New York: American
Institute of Certified Public Accountants, 2013),
229.

Sources not listed in footnotes:

 John E. Elmore, “The Valuation of
Computer Software in the Health Care
Industry,” Willamette Management
Associates Insights (Summer 2016).

Connor Thurman is an associate in our Portland,
Oregon, practice office. Connor can be reached at (503)
243-7514 or at cjthurman@willamette.com.

Very Very Extra
Effort Multipliers Low Low Nominal High High High

VL L N H VH EH
RELY 0.82 0.92 1.00 1.10 1.26
DATA 0.90 1.00 1.14 1.28
CPLX - Control 0.73 0.87 1.00 1.17 1.34 1.74
CPLX - Computations 0.73 0.87 1.00 1.17 1.34 1.74
CPLX - Device 0.73 0.87 1.00 1.17 1.34 1.74
CPLX - Data 0.73 0.87 1.00 1.17 1.34 1.74
CPLX - User 0.73 0.87 1.00 1.17 1.34 1.74
RUSE 0.95 1.00 1.07 1.15 1.24
DOCU 0.81 0.91 1.00 1.11 1.23
TIME 1.00 1.11 1.29 1.63
STOR 1.00 1.05 1.17 1.46
PVOL 0.87 1.00 1.15 1.30
ACAP 1.42 1.19 1.00 0.85 0.71
PCAP 1.34 1.15 1.00 0.88 0.76
PCON 1.29 1.12 1.00 0.90 0.81
AEXP 1.22 1.10 1.00 0.88 0.81
PEXP 1.19 1.09 1.00 0.91 0.85
LTEX 1.20 1.09 1.00 0.91 0.84
TOOL 1.17 1.09 1.00 0.90 0.78
SITE - Collocation 1.22 1.09 1.00 0.93 0.86 0.80
SITE - Communications 1.22 1.09 1.00 0.93 0.86 0.80
SCED 1.43 1.14 1.00 1.00 1.00

Scaling Factors:
VL L N H VH EH

PREC 6.20 4.96 3.72 2.48 1.24 0.00
FLEX 5.07 4.05 3.04 2.03 1.01 0.00
RESL 7.07 5.65 4.24 2.83 1.41 0.00
TEAM 5.48 4.38 3.29 2.19 1.10 0.00
PMAT 7.80 6.24 4.68 3.12 1.56 0.00

Exhibit 3
Omega Gas Transmission Company
Internally Developed Computer Software
Cost Approach
Replacement Cost New less Depreciation Method
COCOMO II.2000 Variables
As of January 1, 2018

48 INSIGHTS • SUMMER 2018 www .willamette .com

Computer Software Programs
Program 1 Program 2 Program 3

Effort Effort Effort
Software Development Cost Drivers Rating [a] Multiplier Rating [a] Multiplier Rating [a] Multiplier

PRODUCT FACTORS
RELY Required System Reliability L 0.92 N 1.00 H 1.10
DATA Data Base Size N 1.00 N 1.00 N 1.00
CPLX Software System Complexity 0.89 0.92 0.92

 Complexity - Control Operations N 1.00 L 0.87 VL 0.73
 Complexity - Computational Operations VL 0.73 L 0.87 N 1.00
 Complexity - Device-Dependent Operation N 1.00 N 1.00 L 0.87
 Complexity - Data Management Operations N 1.00 N 1.00 N 1.00
 Complexity - User Interface VL 0.73 L 0.87 N 1.00

RUSE Required Reusability N 1.00 N 1.00 N 1.00
DOCU Documentation Match to Life-Cycle Needs N 1.00 VL 0.81 N 1.00

COMPUTER FACTORS
TIME Execution Time Constraint N 1.00 N 1.00 N 1.00
STOR Main Storage Constraint N 1.00 N 1.00 N 1.00
PVOL Platform Volatility L 0.87 N 1.00 L 0.87

PERSONNEL FACTORS
ACAP Analyst Capability N 1.00 VH 0.71 N 1.00
PCAP Programmer Capability VH 0.76 H 0.88 H 0.88
PCON Personnel Continuity N 1.00 N 1.00 VH 0.81
AEXP Applications Experience VH 0.81 H 0.88 H 0.88
PEXP Platform Experience H 0.91 N 1.00 H 0.91
LTEX Language and Tool Experience N 1.00 N 1.00 N 1.00

PROJECT FACTORS
TOOL Use of Software Tools VH 0.78 N 1.00 N 1.00
SITE Multisite Development 0.80 1.00 1.11

 Site Collocation EH 0.80 N 1.00 N 1.00
 Communications Support EH 0.80 N 1.00 VL 1.22

SCED Required Development Schedule H 1.00 N 1.00 N 1.00

Product of the Effort Multipliers 0.25 0.41 0.56

Scale Scale Scale
Scale Drivers Rating Factor Rating Factor Rating Factor

SCALE FACTORS
PREC Precedentedness H 2.48 VH 1.24 N 3.72
FLEX Development Flexibility H 2.03 N 3.04 H 2.03
RESL Architecture/Risk Resolution H 2.83 N 4.24 N 4.24
TEAM Team Cohesion N 3.29 N 3.29 L 4.38
PMAT Process Maturity N 4.68 N 4.68 N 4.68

Sum of the Scale Factors 15.31 16.49 19.05

Scaling Exponent 1.0631 1.0749 1.1005

[a] Provided by Omega software development personnel.

Exhibit 4
Omega Gas Transmission Company
Internally Developed Computer Software
Cost Approach
Replacement Cost New less Depreciation Method
COCOMO II.2000 Effort Multipliers and Scaling Exponents
As of January 1, 2018

www .willamette .com INSIGHTS • SUMMER 2018 49

Software Application

 Logical
Executable

Source Lines of
Code [a]

 Effort
Multiplier

[b]

 Scaling
Exponent

[b]

 Replacement Cost
New Development
Effort in Person-

Months

Functional
Obsolescence

Adjustment [c]

 Functional
Obsolescence in
Person-Months

Replacement Cost New
less Depreciation

Development Effort in
Person-Months

Program 1 625,000 0.25 1.0631 690 0% - 690
Program 2 485,000 0.41 1.0749 929 20% 186 743
Program 3 355,000 0.56 1.1005 1,055 0% - 1,055

1,465,000 2,673 186 2,487

[a] Omega management provided the logical executable source lines of code for the subject software.
[b] As presented in Exhibit 3.
[c] A 20 percent obsolescence adjustment was applied for program 2 based on eight years remaining of a 10 year RUL of the program, as indicated
by Omega IT personnel

Exhibit 5
Omega Gas Transmission Company
Internally Developed Computer Software
Cost Approach
Replacement Cost New less Depreciation Method
Development Effort—COCOMO II Model
As of January 1, 2018

Software Application

Primary
Trend Group

[a]

 Logical
Executable

Source Lines of
Code [b]

 Replacement Cost
New Development
Effort in Person-

Months [c]

 Functional
Obsolescence

Adjustment [d]

 Functional
Obsolescence in
Person-Months

 Replacement Cost New
less Depreciation

Development Effort in
Person-Months

Program 1 Business 625,000 482 0% - 482
Program 2 Business 485,000 402 20% 80.4 322
Program 3 Business 355,000 324 0% - 324

1,465,000 1,208 80 1,128

[a] Based on the planned use and function of the subject software programs.
[b] Omega management provided the logical executable source lines of code for the subject software.
[c] Derived by the analyst using the SLIM software engineering cost estimation model (details not presented).
[d] A 20 percent obsolescence adjustment was applied for program 2 based on eight years remaining of a 10 year RUL of the program, as indicated
by Omega IT personnel

Exhibit 6
Omega Gas Transmission Company
Internally Developed Computer Software
Cost Approach
Replacement Cost New less Depreciation Method
Development Effort—SLIM Estimate Model
As of January 1, 2018

Order your copy today!

A PRACTICAL GUIDE TO
BANKRUPTCY VALUATION, 2ND ED.

Published by the American Bankruptcy Institute, the
revised and expanded second edition of A Practical
Guide to Bankruptcy Valuation contains a wealth of
information on how solvency and capital adequacy
analyses, creditor-protection issues, debtor-in-
possession financing, fraudulent conveyance
and preference claims, restructuring of debtor
securities, sale of bankruptcy estate assets, plans of
reorganization, bankruptcy taxation issues and fresh-
start accounting issues, among others, are factored
into properly valuing a bankrupt company .

 Interspersed with helpful charts and hypothetical
examples, this manual describes the generally
accepted approaches for valuing the assets and
securities of a financially troubled business . It also
provides professional guidance to troubled-company
managers, debt-holders and other creditors, equity-
holders and investors, bankruptcy counsel, juridical
finders of fact and other parties to a bankruptcy
proceeding, including those called upon to be expert
witnesses in bankruptcy cases .

 Based on the authors’ combined 75 years of
experience in the valuation field, A Practical Guide
to Bankruptcy Valuation, second edition, lays a solid
foundation for those seeking a better understanding
of valuation within the bankruptcy context .

Willamette Management Associates
thought leadership
www.willamette.com

This book is available for $115 plus shipping at http://www.willamette.com/book_bankruptcy.html.

A Practical Guide to Bankruptcy Valuation provides practical guidance on the
valuation of a business, business ownership interest, security, or intangible
asset within a bankruptcy context.

A PRACTICAL GUIDE TO
BANKRUPTCY VALUATION

Dr. Israel Shaked and Robert F. Reilly

Willamette Management Associates

Table of Contents
Chapter 1: General Business Valuation Issues
A. Elements of the Bankruptcy Valuation
B. Business Valuation Due Diligence Procedures
C. Warning Signs of Financial Distress
D. A Checklist for the Review of a Solvency Opinion
E. Bankruptcy Analyst Caveats
F. Nonsystematic Business Valuation Adjustments
G. Valuing the Financially Distressed Company
H. Case Studies in Corporate Bankruptcy Valuation

Chapter 2: The Fair Market Value Standard of Value
A. FMV and Going-Concern Value Compared: An Expert’s Perspective
B. Understanding Fair Market Value in Bankruptcy

Chapter 3: Market Approach Valuation Methods
A. Fundamentals of the Market Approach
B. Reliance on M&A Transaction Pricing Multiples: Reasons Why

Acquirers Overpay
C. Guideline Company Valuation Methodology: Details Often Over-

looked
D. Playing the Market (Approach): Going Beyond the DCF Valuation

Method

Chapter 4: Income Approach Valuation Methods
A. The Foundations of Discounting: Time Value of Money
B. Discounted Cash Flow Valuation: The Basics
C. Solvency Analysis: A Primer on Applying the Discounted Cash Flow

Method

Chapter 5: Income Approach—Estimating the Cost of Capital
A. Fundamentals of the Cost of Capital
B. A Primer to Cost of Capital for the Distressed/Bankrupt Company
C. Cost of Capital: Company-Specific Risk Premium

Chapter 6: Asset-Based Approach Valuation Methods
A. The Asset-Based Approach to Business Valuation
B. The Asset-Accumulation Method
C. The Adjusted Net Asset Value Method

Chapter 7: Valuation Discounts and Premiums
A. Measuring the Discount for Lack of Marketability in Debtor Com-

pany Business Valuations
B. Measuring the Discount for Lack of Marketability for Debtor Com-

pany Security Valuations
C. Liquidity and Control: Valuation Discounts and Premiums and the

Debtor Company

Chapter 8: Valuing the Distressed or Bankrupt Fraud-Plagued
Company

A. Had the Information Been Known: Lessons from the Enron Insolvency
B. Quantifying the Impact of Fraud
C. Judging Fraud: The Case of Relying on Wrong Information Valua-

tion of Closely Held Debtor Company Stock

Chapter 9: Valuation of Special Properties and Industries
A. Health Care or Pharmaceutical Company Valuation
B. Real Estate Appraisal Report Guidance
C. Personal Property Appraisal Report Guidance
D. Property Appraisal Due Diligence Procedures
E. The Valuation of NOLs in a Bankruptcy Reorganization

Chapter 10: Valuation of Debtor Company Goodwill
A. Goodwill Valuation
B. Debtor Company Goodwill Allocation
C. How Good Is Goodwill?

Chapter 11: Valuation of Debtor Company Intangible Assets
A. Structuring the Intangible Asset Valuation
B. The Identification of Intangible Assets
C. The Valuation of Intangible Assets
D. Intellectual Property Valuation
E. Market Approach Intellectual Property Valuation Methods
F. Customer Intangible Asset Valuation
G. Contract Intangible Asset Valuation
H. Technology Intangible Asset Valuation
I. Computer Software Valuation
J. Effective Intangible Asset Valuation Reports

Chapter 12: The Role of Projections and Uncertainty in Valua-
tion

A. Cornerstone of Financial Decision-Making: Credible Projections
B. Role of Uncertainty in Determining a Distressed Company’s Fate
C. Decision Trees for Decision-Makers

Chapter 13: The Leverage Effect: Compounds Success and
Accelerates Death

A. Debtor Beware: Double-Edged Sword of Financial Leverage
B. Operating Leverage: The Often-Overlooked Risk Factor

Chapter 14: Bankruptcy Valuation Hearings
A. The Mirant Valuation Saga: Epic Battle of Experts
B. Bankruptcy Valuation Hearings: As Highly Contested as Ever

Chapter 15: Bankruptcy-Related Tax and Accounting Issues
A. Income Tax Consequences of Debt Modifications
B. Tax Status Considerations for the Reorganized Company
C. Earnings: Quality vs. Quantity

Chapter 16: Bankruptcy Valuations for Special Purposes
A. Fraudulent Transfers and the Balance Sheet Test
B. Reasonableness of Shareholder/Executive Compensation Analyses
C. Structuring the Debtor Company Sale Transaction
D. Analyst Guidance Related to Bankruptcy Valuation Reports and

Expert Testimony

Glossary

