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Decision Analysis and Real Options: A Discrete Time 

Approach to Real Option Valuation 
 

Abstract 

 
In this paper we seek to enhance the real options methodology originally 

developed by Copeland and Antikarov (2001) with traditional decision analysis tools to 

propose a discrete time method that allows the problem to be specified and solved with 

off the shelf decision analysis software. This method uses dynamic programming with an 

innovative algorithm to model the project’s stochastic process and real options with 

decision trees. The method is computationally intense, but simpler and more intuitive 

than traditional methods, thus allowing for greater flexibility in the modeling of the 

problem. 
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Decision Analysis and Real Options: A Discrete Time 

Approach to Real Option Valuation 

1. Introduction 

Due to its importance for the creation of value for the shareholder, the investment 

decision in the firm has always been a focus of academic and managerial interest. The use 

of the discounted cash flow method (DCF), introduced in firms in the 1950’s, was 

initially considered a sophisticated approach for the valuation of projects due to the need 

to use present value tables. In spite of its obvious advantages over the obsolete payback 

method in use until then, its widespread use occurred only after the development of 

portable calculators and computers that automated the necessary financial calculations, 

and most practitioners currently consider it the model of choice. 

More recently, the pioneering work of Black and Scholes (1973) and Merton 

(1973) for the evaluation of financial options provided the groundwork for the idea of 

incorporating option pricing methods into the problem of valuing real investments under 

uncertainty. These methods add the value of managerial flexibility to the traditional DCF 

approach, and have been called real options theory, to indicate the focus on options 

associated with real assets rather than with financial assets. However, despite its 

theoretical appeal, the mathematical complexity of real options valuation methods has 

limited the use of this approach by a broader audience in the industry.  

This additional complexity is due to several factors. The underlying assets for 

financial options are usually market securities, commodities, or financial assets that 

possess characteristics facilitating the valuation of the option. These characteristics 

include market price, historical data, divisibility and a reasonable knowledge of their 

probabilistic distributions, which allow one to model their future distributions with some 

degree of confidence. Real options, on the other hand, are more complex because the real 

assets that are their underlying assets usually do not have most of these traits. Another 

source of complexity is the high degree of mathematical sophistication necessary for 

modeling in continuous time, generally beyond the skills of most practitioners. But, as 

occurred with the DCF method, the continuing evolution of computational tools to 
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automate the more difficult parts of the process and some progress regarding the 

underlying theory have tended to make the use of real options techniques more and more 

widespread. 

In this paper we seek to enhance the real options methodology originally 

developed by Copeland and Antikarov (2001) with traditional decision analysis tools to 

propose a method that addresses these issues while allowing the problem to be specified 

and solved with off-the-shelf decision analysis software. We do this by first determining 

a set of virtual cash flows (pseudo cash flows) and risk neutral probabilities that will give 

the correct project values when discounted to each period and state. Project flexibilities, 

or real options, can then be modeled easily as decisions that affect their pseudo cash 

flows. The specification of the project values in time as a function of future cash flows 

also allows the problem to be modeled as a decision tree, and allows the use of 

commercially available decision tree software. 

Previous work on the decision analysis perspective on real options has been 

limited. Howard (1996) notes that even though real options are an integral part of many 

investment projects, their value has frequently been overlooked when modeling the 

decision process, and that decisions trees are a natural way to model project flexibility. 

The relationship between option pricing and decision analysis has been studied by Smith 

and Nau (1995), who show that options pricing and decision analysis methods give the 

same results when applied correctly, and propose a method for valuing projects by 

distinguishing between market risks, which can be hedged by trading securities, and 

private uncertainties which are project specific risks uncorrelated with the market. Smith 

and McCardle (1999) illustrate how both option pricing and decision analysis methods 

can be integrated in the context of a real oil and gas project. 

 The approach we propose differs from the Smith and Nau approach in the 

following way. As noted above, their approach relies on distinguishing between market 

risks and project specific risks. In the context of oil and gas exploration projects, this 

distinction is often a very natural one, since oil and gas prices are market risks, while the 

project specific risks may be the probability of a dry hole, or the probability distribution 

regarding the volume of reserves. In problem contexts such as these, the Smith and Nau 

approach has a natural appeal. However, there are projects in other industries where the 
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distinction between market risks and project specific risks is either not so clear, or not a 

meaningful concept. Copeland and Antikorov have suggested an approach to valuing 

options for these projects, and our methodology provides a practical computational 

solution for this approach based on the use of binomial decision trees. 

The remainder of the paper is organized as follows: Section 2 reviews the 

traditional approaches to project valuation. Section 3 introduces a decision tree approach 

to real options modeling based on Copeland and Antikarov’s assumptions. In Section 4 

we apply the model to solve a sample problem and in Section 5 we conclude with a 

summary and discussion of further research issues regarding model formulation and 

solution procedures. 

 

2. Valuation  

2.1 Discounted Cash Flow Method (DCF) 

With the DCF method the value of a project is determined by discounting the 

future expected cash flows at a discount rate that takes into account the risk of the 

project. In complete markets, this discount rate can be inferred by observing the market 

price of a portfolio of securities that replicate these expected cash flows in all the states of 

nature and in all future periods. In incomplete markets, there will always be a tracking 

error due to the difference between the cash flows of the replicating portfolio and those of 

the project, except in some special cases such as natural resources projects where project 

cash flows can be perfectly replicated by a portfolio of futures contracts of the 

commodity and an investment in risk free assets.  

As a practical matter, most investment projects are valued using a DCF approach 

based on the weighted average cost of capital for the firm, or WACC. The determination 

of the WACC involves the use of the capital asset pricing model (CAPM) to estimate the 

rate of return required by equity investors from market information regarding stock 

prices, and this firm-specific information is typically applied to individual investment 

projects. While the WACC may be an appropriate discount rate for projects that generally 

mimic the risks associated with the firm as a whole, it may not be appropriate for unusual 
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or innovative investment projects. The practitioner must then use judgment when 

choosing an appropriate discount rate for the project.  

The main criticism of DCF is the implicit assumption that once the firm commits 

to a project, the project’s outcome will be unaffected by future decisions of the firm, 

thereby ignoring any managerial flexibility the project may have. This managerial 

flexibility has value, and represents the real options associated with the project. 

2.2 Real Options Valuation  

Management flexibility is the ability to affect the uncertain future cash flows of a 

project in a way that enhances its expected returns or reduces its expected losses. Typical 

project flexibilities include the option to expand operations in response to positive market 

conditions or to abandon a project that is performing poorly. Management may also have 

the option to defer investment for a period of time, to temporarily suspend operations, to 

switch inputs or outputs, to reduce the scale or to resume operations after a temporary 

shutdown. All of these opportunities represent options on real assets that allow 

management to enhance the value of the project; thus, they are called real options. The 

value of these options cannot be determined by the traditional DCF method, but only 

through option pricing or decision analysis methods. 

Option pricing methods were first developed to value financial options. Several 

pioneering works made the transition from the concepts developed by Black and Scholes 

(1973) and Merton (1973) for the valuation of financial options to the valuation of 

options on real assets. Tourinho (1979) used the concept of an option to evaluate a non 

renewable natural resources reserve under price uncertainty; Brenann and Schwartz 

(1985) analyzed the optimal operational policy of a copper mine; McDonald and Siegel 

(1986) determined the optimal timing for investing in a project with irreversible 

investments with uncertain cost and benefits represented by a continuous time stochastic 

processes. Dixit and Pindyck (1994) and Trigeorgis (1995) were among the first authors 

to synthesize several of these ideas. 

Traditional option pricing methods require that markets be complete, i.e., that 

there is a marketed security or a portfolio of securities whose payoffs replicate the 

payoffs of the project in all states and periods. This is the underlying assumption of much 
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of the work done in the field of continuous time real option valuation (Trigeorgis (1995), 

Brennan and Schwartz (1985), MacDonald and Siegel (1986)) and allows the 

determination of the correct discount rate for the project. Although this may be a 

reasonable assumption for options on financial assets, for most real asset projects no such 

replicating portfolio of securities exists and markets are said to be incomplete. For this 

case Dixit and Pindyck (1994) propose the use of dynamic programming using a 

subjectively defined discount rate, but the result does not provide a market value for the 

project and its options.  

Copeland and Antikarov suggest an alternative discrete time method based on the 

assumption that the present value of the project without options is the best unbiased 

estimator of the market value of the project (the Marketed Asset Disclaimer, or MAD 

assumption). With this assumption, the project itself becomes the underlying asset of the 

replicating portfolio, thus making the markets complete for the project options. As a 

result, these options can now be valued with traditional option pricing methods. Another 

assumption they make is that the variations in the value of the project follow a random 

walk. While these assumptions are also subject to a number of caveats, we will adopt this 

point of view for the purpose of this discussion. 

2.3 Decision Tree Analysis (DTA) and Risk Neutral Probabilities 

Some of the limitations of the DCF method can be overcome with the use of 

decision tree analysis (DTA). With DTA, managerial flexibility is modeled in discrete 

time by means of future decision instances that allow the manager to maximize the value 

of the project conditioned on the information available at that point in time, after several 

uncertainties may have been resolved.  

A naïve approach to valuing projects with real options would be simply to include 

decision nodes corresponding to project options into a decision tree model of the project 

uncertainties, and to solve the problem using the same risk-adjusted discount rate 

appropriate for the project without options. Unfortunately, this naïve approach is 

incorrect because the optimization that occurs at the decision nodes changes the expected 

future cash flows, and thus, the risk characteristics of the project. As a consequence, the 

standard deviation of the project cash flows with flexibility is not the same as that of the 
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project without flexibility, and the risk-adjusted discount rate initially determined for the 

project without options will not be the same for the project with real options. This fact 

has caused some authors to wrongly conclude that is inappropriate to use DTA to value 

real option problems.  

However, real option problems can be solved by DTA with the use of risk neutral 

probabilities. This implies that we can discount the project cash flows at the risk free rate 

of return and make any necessary adjustments for risk in the probabilities of each state of 

nature (Smith and Nau, 1995).  

An example taken from Copeland and Antikarov illustrates this concept. Suppose 

there is a two state project with equal chances of cash flows of $170 or $65 one year from 

now that has a risk-adjusted discount rate of 17.5% and that will cost $115 next year. For 

obvious reasons, these two states are commonly called the “up state” and the “down 

state”, respectively. The expected present value of the project is 

[0.5($170) + 0.5($65)] / 1.175 = $100 and the net present value is $2.13 as shown in 

Figure 1. 

Suppose now that the decision to commit to the project can be deferred until next 

year, after the true state of nature is revealed, and that the risk free rate is 8%. The 

original discount rate of 17.5% cannot be used because the risk of the project has now 

changed due to the option to defer the investment decision. On the other hand, a set of 

risk neutral probabilities for the original project (probabilities that would give the same 

project value as before when discounting the cash flows at the risk free rate of return) can 

be determined and used to value the project with the deferral option, since the expected 

cash flows for both problems are the same ($170 and $65).  
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 Up state 
 46.8  .500 
[46.8] 

 Down state 
 -42.6  .500 
[-42.6] 

Chance 
 Accept [2.13] 

 Reject [0] 

Decision 
 [2.13] 

Net Payoff in One Year
    (65 - 115) / 1.175

Net Payoff in One Year
    (170 - 115) / 1.175

 

Figure 1– The Project with Objective Probabilities and 
a Risk-adjusted Discount Rate 

While the correct risk-adjusted discount rate of a project with options is difficult 

to determine due to the effect these options have on the project risk, the risk free rate of 

return can be readily observed in the market. By switching from objective probabilities to 

risk neutral probabilities, the project NPV with options can then be estimated even 

without knowing the correct risk-adjusted discount rate.  

In this simple example this can be done by setting the expected present value of 

the project determined with the objective probabilities and the risk-adjusted discount rate 

equal to the expected present value of the project with the unknown risk neutral 

probabilities and the risk free discount rate, and by solving for the risk neutral probability 

pr. That is, we would let  

 
08.01

)65)($1()170($100$
+

−+
= rr pp   

and solve to determine pr = 0.41. 

The project with the option to defer has net payoffs of $170-$115=$55 in the up 

state and zero in the down state as illustrated in Figure 2, as there will be no investment if 

it is known beforehand that the down state will prevail. The net present value of the 

project with the option to defer is [0.41($55) + 0.59($0)] / 1.08 = $20.86, up from $2.13. 

This implies that the value of the option to defer is $18.73.  
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 Accept 
 50.9 
[50.9] 

 Reject 
 0 
[0] 

Decision 
 Up state 
 .410 

[50.9] 

 Accept 
 -46.3 
[-46.3] 

 Reject 
 0 
[0] 

Decision 
 Down state 
 .590 

[0] 

Chance 
 [20.9] 

Net Payoff in One Year
(65 -155) / 1.08

Net Payoff in One Year
(170 - 115) / 1.08

 

Figure 2 – Project with Risk Neutral Probabilities 
       and a Risk Free Discount Rate 

 

3. The Discrete Time Model for Real Options Analysis 

Methods for the evaluation of real options in continuous time have some 

important practical limitations. Markets are incomplete for the great majority of the 

projects, and even when the ideal conditions associated with complete markets do occur it 

may be extremely difficult to determine a market portfolio that has a perfect correlation 

with the risk of the project. As a result, it may not be practical to find the appropriate 

discount rate for an individual project.   

Suppose we do assume that the WACC is the appropriate discount rate for an 

individual project without options. However, the existence of managerial flexibility 

changes the risk of the project since the manager can choose to exercise these options if 

they increase project value or decrease project losses, so the WACC would not be the 

appropriate discount rate for the project with options, as illustrated in the previous 

example.  

The model proposed for real options analysis by Copeland and Antikarov (2001) 

uses two key assumptions to overcome these limitations. The first one is the Marketed 
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Asset Disclaimer assumption already mentioned in Section 2. The second assumption is 

that the variations in the project returns follow a random walk.  

Let Vi be the value of a project at time period i and Vi+1/Vi be its return over the 

time period between i and i+1. Under the random walk assumption, the logarithm of the 

return )/ln( 1 ii VV +  is normally distributed, and we define v and σ 2 as the mean and 

variance of this normal distribution. When the time period length tends to zero, this 

stochastic model can be expressed as an Arithmetic Brownian Motion (ABM) random 

walk process dzdtVd σν +=ln where dz dtε=  is the standard Wiener process.  

The assumption that the distribution of the logarithm of the project returns at any 

point in time is normal implies that the distribution of the project value at any point in 

time is lognormal. Accordingly, changes in Vi will be lognormally distributed, and can be 

modeled as a Geometric Brownian Motion (GBM) stochastic process in the form 

VdzVdtdV σµ +=  where 2

2
1σνµ += . For a discussion of this random walk assumption, 

see also Hull (1999) and Luenberger (1998). 

The importance of this second assumption is the following. A project may involve 

several uncertainties, which would complicate an effort to model its stochastic process. 

This assumption allows any number of uncertainties in the model of the project to be 

combined into one single representative uncertainty, the uncertainty associated with the 

stochastic process of the project value V, and the parameters of this process can be 

obtained from a Monte Carlo simulation of the project cash flows. And, as we shall see, a 

discrete time model using a binary lattice or a binary tree can approximate this 

continuous time stochastic process. We refer the reader to Copeland and Antikarov for a 

more thorough discussion of these assumptions. 

To illustrate this idea, we assume there is a project that will last m periods, that 

requires an initial investment I to be implemented, and that generates an expected cash 

flow Ci, i = 1,2,...,m in each of these periods. For simplicity we assume that the cash 

flows are paid instantaneously at the end of each time period in a manner analogous to 

the dividends of a stock. These cash flows represent the dividends distributed by the 

project where iii VC /=δ  is the dividend distribution rate and Vi is the pre-dividend value 

of the project in period i. The project is subject to market uncertainties that will affect its 
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future cash flows, and also has sufficient managerial flexibility to allow an active 

management to maximize its value during its operational life.  

The risk-adjusted discount rate for the project without options is µ. For an 

internally financed project, this rate may be equal to the firm’s WACC, and we assume 

that the project cash flows will be reinvested in the firm or distributed as dividends after 

allowing for financing costs. For an externally financed project, where the project is 

structured as an independent entity with one or more shareholders and non-recourse debt 

and the cash flows are necessarily distributed as dividends, this rate is equal to the rate of 

return on equity demanded by the shareholders. 

The modeling of the problem will be done in three steps. First the project is 

analyzed to determine its expected present value at time 0. Next a Monte Carlo 

simulation is performed with the objective of combining all sources of uncertainty into 

one single distribution and the stochastic process for the value of the project is defined. 

The third and last step involves the creation of a binomial tree to model the dynamics of 

the project value, and of a decision tree with the decision nodes that model the project’s 

real options. 

These first two steps are identical to those proposed by Copeland and Antikarov. 

For the third step we provide an alternative solution methodology based on a binomial 

tree that offers computational and logical advantages. For completeness, we briefly 

summarize the first two steps below, and then discuss our proposed modifications of the 

third step in more detail. 

3.1 Modeling with Expected Cash Flows 

The present value of the project at time 0, V0, is determined with the traditional 

DCF method using a spreadsheet to calculate the expected cash flows 

{ },   = 1, 2, ..., iC i m  without including the impact of any real options that may exist due 

to managerial flexibilities associated with the project. These cash flows are then 

discounted at the risk-adjusted discount rate µ to obtain the present value of the project in 

each period.  
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(1 )

m
t

i t i
t i

CV
µ −

=

=
+∑      (3.1) 

The value of the project will decrease in each period due to the payment of 

dividends, which are assumed to be equal to the cash flows in each period. The dynamics 

of the evolution of the value of a four period project under conditions of certainty are 

illustrated in Figure 3.  

 

0

250

500

750

1,000

1,250

1,500

0 1 2 3 4
 

Figure 3 – Project Value Dynamics 

3.2 Monte Carlo Simulation  

The lognormal distribution of the project’s value can be fully defined by the mean 

and standard deviation of its returns. Note that under the MAD assumption, the present 

value of the project without options is taken as its market price, as if the project were a 

traded asset. Assuming that markets are efficient, purchasing the project at this price 

guarantees a zero NPV and the expected return of the project will be exactly the same as 

its risk-adjusted discount rateµ . As a result, the mean of the project’s returns is 

exogenously defined. In practice, this risk-adjusted discount rate for the project without 

options is typically set equal to the firm’s WACC, although the analyst may choose a 

different rate appropriate for each specific project.  
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The standard deviation, or volatility of the project, can be determined from a 

Monte Carlo simulation of the ABM process of the returns lnd V vdt dzσ= + . The 

impacts of uncertainties affecting the relevant variables of the project on the returns are 

determined by simulating each of their stochastic processes, and as a result, the project 

cash flows become stochastic. Each iteration of the Monte Carlo simulation provides a 

new set of future cash flows from which a new project value V1 at the end of the first 

period is computed using (3.1) with i = 1, and a sample of the random variable v can be 

determined from 

   1

0

ln Vv
V
 

=  
 

      (3.2) 

where .)~( νν =E  

A full run of the simulation provides a sample set of the random variable v  from 

which the project volatility is then computed. The volatility σ is defined as the annualized 

standard deviation of the returns and its computation is straightforward.  

3.3 Binomial Lattice 

Given the initial project value V0, the risk-adjusted discount rate µ, and the 

volatility σ, as previously determined, the value of the project can be modeled in time as 

a GBM stochastic process by means of a discrete recombinant binomial lattice according 

to the model of Cox, Ross and Rubinstein (1979) as shown in Figure 4.  
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V0 u2d
V0 u

V0 d2

V0 d3
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V0 u2

V0 d

V0 u3 ……...
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……...

……...

(1-p)

p

p

p

(1-p)

(1-p)

 

Figure 4– Binomial Lattice 

The pre-dividend value of the project in each period and state is given by 

, 0
i j j

i jV V u d−= , where tu eσ ∆= and td e σ− ∆=  are the parameters governing the size of 

the up and down movements in the lattice. The objective probability of an up movement 

occurring is
.te dp

u d

µ

µ
−

=
−

, where i = period (i = 0, 1, 2, ..., m) and j = state (j = 0, 1, 2, ..., 

i). Note that this objective probability is determined by the value of the risk-adjusted 

discount rate µ as well as the values of u and d. 

The project pays out dividends in each period in the form of cash flows, and 

consequently the project value suffers a discontinuity at the time of this distribution. The 

dividend distribution rate is the fraction of the total project value the cash flows represent 

in each period. Accordingly, a more accurate representation of the value of the project in 

time is shown in Figure 5. 
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V0 ud(1-δ1)(1-δ2)

V0 ud2(1-δ1)(1-δ2)(1-δ3)

V0 u2d(1-δ1)(1-δ2)(1-δ3)

V0 d2(1-δ1)(1-δ2)

V0 d
3(1-δ1)(1-δ2)(1-δ3)

V0 V0 u2(1-δ1)(1-δ2) V0 u3(1-δ1)(1-δ2)(1-δ3) ……...

……...

……...

……...

V0 u(1-δ1)

V0 d(1-δ1)

(1-p)

p

 

Figure 5– Binomial Lattice with Dividends 

The continuous time stochastic process associated with this dividend-paying 

project is ( )tdV Vdt Vdzµ δ σ= − + , where δt is the instantaneous dividend distribution rate 

at time t. In the discrete time binomial approximation the dividends are explicitly factored 

into a binomial tree and no further consideration of the dividends is required. To avoid 

double counting, we will then use the risk-adjusted discount rate µ rather than µ - δt as 

the parameter for the binomial model. 

Under uncertainty, the pre-dividend value of the project Vij in period i, state j, is 

given by the following recursive equation  

1

, 0
1

(1 )
i

i j j
i j k

k
V V u d δ

−
−

=

= −∏     (3.3) 

The probability Pi,j that the value Vij will occur is , (1 )i j j
i j

i
P p p

j
− 

= − 
 

, where 

!
( )! !

i i
j i j j

 
=  − 

 is the binomial coefficient.  

These relationships provide the results used by Copeland and Antikorov in their 

solution approach based on the use of a binomial lattice. However, the computational 

requirements of this approach are cumbersome, due to the requirement of solving for a 



15 

replicating portfolio at each node in the lattice, and the logic of the binomial lattice when 

options are included is not transparent. 

 

3.4 Project Decision Tree 

In the binomial lattice model, the pre-dividend value of the project in period i and 

state j is a function of the value V0 of the project at time zero, of the discount rate µ, of 

the volatility σ and of the dividend distribution rate δi. When the real options of the 

project are incorporated into the analysis, the binomial lattice (a model of uncertainty) 

can be transformed into a decision tree (uncertainty plus options).  

Modeling the options by determining their impact on the project cash flows is 

simpler than calculating their impact on the value of the project. An algebraic 

transformation can be used to value the project as function of a series of artificial cash 

flows that have the property of guaranteeing that the stochastic process followed by the 

project value is the same Geometric Brownian Movement determined previously. These 

cash flows, which we will call pseudo cash flows (Ci,j), will themselves be a function of 

the expected cash flows of the project Ci (i = 1, 2, ..., m), of µ and of the parameters u and 

d of the binomial model. The Marketed Asset Disclaimer assumption assures that markets 

are complete for the project, and that there exists a unique set of risk neutral probabilities 

that allow the project to be discounted at the risk free rate of return, as seen in the 

example in Section 2.3. The solution for the risk neutral probabilities is given by 
r t

r
e dp
u d
−

=
−

, which depends on the risk free discount rate r rather than the risk-adjusted 

discount rate µ . 

The main advantage of this transformation is that it allows the project value 

function to be expressed in terms of a more basic variable, the project cash flows, 

providing greater flexibility in the modeling of the real options of the project. We begin 

by establishing the relation between V0 and V1 and the expected cash flow. From equation 

(3.1), 

1
(1 )

(1 )

m
i t

i i t
t i

CV C µ
µ= +

− = +
+∑      (3.4) 
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Setting i = i + 1 and substituting in (3.1), we obtain 

( )1 (1 )i i iV V Cµ+ = + −      (3.5) 

There are no cash flows or dividend payments in the initial period (i = 0), since 

the project has not yet been initiated, so C0 = 0. For i = 0 we then have 

 

   1 0(1 )V Vµ= +       (3.6) 

The dividend distribution rate is assumed to be constant across states in each 

period but variable in time, so the cash flows in each period are a fixed proportion of the 

value of the project in that period and state, as expressed in  

,

,

i ji
i

i i j

CC j
V V

δ = = ∀      (3.7) 

 

Using (3.3) and (3.7), and calculating Ci+1, j as function of the previous cash flow 

Ci,j, we arrive at  

 

   1
1, ,

(1 )i i
i j i j

i

C u Cδ δ
δ

+
+

−
= ⋅     (3.8) 

 

By analogy we have 

   1
1, 1 ,

(1 )i i
i j i j

i

C d Cδ δ
δ

+
+ +

−
= ⋅     (3.9) 

     

and  

, 0
i j j

i j iC V u dδ −=      (3.10) 

 

For further simplification, these formulas can also be expressed as functions of 

the expected cash flows. Substituting i
i

i

C
V

δ =  and (3.6) in (3.10) we obtain 
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   1
, (1 )

i j ji
i j

i

C VC u d
V µ

−=
+

 

And for i = 1, 

   11
1, 1

j j
j

CC u d
µ

−=
+

     (3.11) 

 

Making a similar substitution in (3.9) and (3.10), and using (3.11) we have 

 

 

1
1, ,

1
1, 1 ,

(1 )

2,3,..., 0,1, 2,...
(1 )

i
i j i j

i

i
i j i j

i

CC C u
C

CC C d i m j i
C

µ

µ

+
+

+
+ +

 = ⋅ +

 = ⋅ = =
 +

 (3.12) 

. 

The expression (3.11) provides the pseudo cash flows in the first period of the 

project. Using this and (3.12), we can obtain the values of the pseudo cash flows in the 

subsequent periods and states as a function of the pseudo cash flows immediately before, 

the discount rate µ and the parameters u and d. In other words, (3.12) provides the branch 

values in each chance node of the decision tree. Since we are using risk neutral 

probabilities, these cash flows are discounted at the risk free rate to arrive at the present 

value of the project at time t = 0. 

Both the binomial lattice and the binomial tree representations of the stochastic 

process associated with the project values or the pseudo cash flows can be created using 

the risk-adjusted discount rate µ and the corresponding probability 
.te dp

u d

µ

µ
−

=
−

 of an up 

state, or with the risk free interest rate r and the corresponding risk neutral probability 
r t

r
e dp
u d
−

=
−

. Both approaches will provide the same results for a project with no options, 

but only the latter can be used for real option valuation. 

The use of these pseudo cash flows, rather than the estimates of the project values, 

allows the easy use of decision trees rather than binomial lattices to evaluate project 

options. As a result, the evaluation of real options can be carried out conveniently using 

“off-the-shelf” decision tree software, and allows options to be included in the models 
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using decision nodes that are a natural part of this problem representation. This advantage 

can best be illustrated with a simple example. 

4. Example 

We will illustrate this approach to the evaluation of real options with a simple 

four-period project using commercially available decision analysis software, DPL™. Due 

to limitations in the software, the decision tree representation is essentially a binary tree 

augmented by decision nodes, and it is not recombining like a binary lattice. This results 

in a large tree due to the unnecessary duplication of nodes, but provides a visual interface 

and a convenient and flexible modeling tool.  

The spreadsheet for the example project is shown in Table 1. The risk-adjusted 

discount rate is assumed to be 10%, the value of the WACC, and the risk free rate is 5%. 

The first step is simply the computation of the expected value of the future cash flows 

and the present value of the project at time zero, as illustrated in Table 1.  

 0 1 2 3 4 

Revenue  1000 1080 1166 1260 
Variable Cost  (400) (432) (467) (504) 

Fixed Cost  (240) (240) (240) (240) 
Depreciation   (300) (300) (300) (300) 

EBIT  60 108 160 216 
Tax 50% (30) (54) (80) (108) 

Depreciation  300 300 300 300 
Investment (1,200)         

Cash Flow (1,200) 330 354 380 408 
      

PV0 = 1,157  WACC = 10%  
Invest = (1,200)     

NPV = (43)     

Table 1 – Project Spreadsheet 

The present value of $1,157 of the project without options is assumed to be the 

best estimate of its market value. Since the required investment is $1,200, the project has 

a negative NPV, which indicates that it should not be implemented.  
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In this example we assume a single source of uncertainty, the future value of the 

revenue stream, although other sources of uncertainty could be easily incorporated into 

the model. Suppose the future project revenues R follow a GBM stochastic process with a 

mean αR = 7.70% (which is equivalent to a discrete annual growth of 8.0%) and volatility 

σR = 30%. Next we perform a Monte Carlo simulation on the project cash flows where 

the future revenues are modeled with these parameters. After a number of iterations we 

compute the standard deviation of ( )1 0ln /v V V=  to obtain an estimate of the project 

volatility σ = 24.35%. Finally, we assume that the project rate of return is normally 

distributed, so the project value will have a lognormal distribution at any point in time 

that may be approximated by a binomial lattice or the corresponding binomial tree.  

Next we compute the values of u, d, and the risk neutral probability pr, according 

to the formulas defined previously. The pseudo cash flows of the project are computed 

using formulas (3.12) and (3.13), and the value of the project is determined applying the 

usual procedures of dynamic programming implemented in a binomial tree, and 

discounting the expected cash flows at the risk free rate of return. Risk neutral 

probabilities are used to arrive at the project expected value. The present value obtained 

with this model is the same as the one calculated with the spreadsheet, as illustrated in 

Figure 6.  

For example, using (3.11), the pseudo cash flow in the upper branch of period 1 is 

1,0
330 1.276 $382.7

1 0.10
C = =

+
. Discounting this value at the risk free rate r = 5% for one 

period yields $364.5, as can be seen in Figure 6. C2,0 is computed from (3.12) as 

2,0
354 (382.7)(1.276) $476.1

330(1 0.10)
C = =

+
, which discounted at the risk free rate for 

two periods yields $431.9. All other pseudo cash flows can be computed in a similar way.  

Note that the values for σ, µ, r and the project expected cash flows Ci can be 

entered as parameters in a decision tree model, and all the necessary formulae can be 

incorporated into the tree structure. In effect, tree building can be greatly simplified by 

developing a standard template for a binary tree for any given number of time periods.  
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 High 
  607.2  .541 
 [1916] 

 Low 
  373.1  .459 
 [1681] 

T4 
 High 

 512  .541 
[1808] 

 High 
  373.1  .541 
 [1484] 

 Low 
  229.2  .459 
 [1340] 

T4 
 Low 

 314.6  .459 
[1418] 

T3 
 High 

 431.9  .541 
[1629] 

 High 
  373.1  .541 
 [1317] 

 Low 
  229.2  .459 
 [1174] 

T4 
 High 

 314.6  .541 
[1251] 

 High 
  229.2  .541 
 [1052] 

 Low 
  140.8  .459 
 [964] 

T4 
 Low 

 193.3  .459 
[1012] 

T3 
 Low 

 265.4  .459 
[1141] 

 T2 
 High 

  364.5  .541 
 [1405] 

 High 
  373.1  .541 
 [1177] 

 Low 
  229.2  .459 
 [1033] 

T4 
 High 

 314.6  .541 
[1111] 

 High 
  229.2  .541 
 [911.8] 

 Low 
  140.8  .459 
 [823.4] 

T4 
 Low 

 193.3  .459 
[871.2] 

T3 
 High 

 265.4  .541 
[1001] 

 High 
  229.2  .541 
 [809.5] 

 Low 
  140.8  .459 
 [721.1] 

T4 
 High 

 193.3  .541 
[768.9] 

 High 
  140.8  .541 
 [646.6] 

 Low 
  86.53  .459 
 [592.3] 

T4 
 Low 

 118.8  .459 
[621.7] 

T3 
 Low 

 163  .459 
[701.3] 

 T2 
 Low 

  224  .459 
 [863.4] 

 T1 
 [1157] 

 
 

Figure 6 – Project Decision Tree 

This binomial tree can now be used to evaluate real options. Suppose the project 

can be abandoned in the third year of its life for a terminal value of $350. Given the 

binary tree representation, this option can be evaluated by simply inserting a decision 

node in time period 3 that models the managerial flexibility that exists in the third year of 

the project. A new present value for the project is then computed using the same risk 

neutral probabilities, as illustrated in Figure 7. In some of the states the abandon option 

will be exercised, and the value of the project with this real option is increased to $1,215. 
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 T4 
Continue  [1827] 

Abandon 
  302.3 
 [1623] 

Dec 3 
 High 

 518.9  .538 
[1827] 

 T4 
 Continue  [1426] 

Abandon 
  302.3 
 [1420] 

Dec 3 
Low 

 316  .462 
[1426] 

T3 
 High 

 435.8  .538 
[1642] 

 T4 
 Continue  [1256] 

 Abandon 
  302.3 
 [1250] 

Dec 3 
High 

 316 .538 
[1256] 

 T4 
Continue  [1012] 

Abandon 
  302.3 
 [1126] 

Dec 3 
 Low 

 192.4  .462 
[1126] 

T3 
 Low 

 265.4  .462 
[1196] 

 T2 
 High 

  366.1  .538 
 [1436] 

 T4 
 Continue  [1113] 

Abandon 
  302.3 
 [1107] 

Dec 3 
 High 

 316  .538 
[1113] 

 T4 
 Continue  [868.6] 

 Abandon 
  302.3 

 [983.1] 

Dec 3 
Low 

 192.4 .462 
[983.1] 

T3 
 High 

 265.4  .538 
[1053] 

 T4 
Continue  [764.8] 

 Abandon 
  302.3 

 [879.3] 

Dec 3 
 High 

 192.4  .538 
[879.3] 

 T4 
 Continue  [616.1] 

Abandon 
  302.3 

 [804.1] 

Dec 3 
 Low 

 117.2  .462 
[804.1] 

T3 
 Low 

 161.6  .462 
[844.6] 

 T2 
 Low 

  223  .462 
 [956.6] 

 T1 
 [1215] 

 

Figure 7 – Decision Tree with Option to Abandon 

Once the project’s stochastic parameters are determined and the decision tree is 

structured, additional options can be added with ease. For example, suppose that the 

option to abandon can also be exercised in year 2, and that there exists an option to 

expand the project by 30% also in year 2 at a cost of $100. The decision tree model is 

shown in Figure 8. The project value increases to $1,280, and the expansion option will 

be exercised in all states of year 2, except one, while the abandon option will continue to  
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T4 
 Continue [2044] 

 Abandon 
 302.3 
[1688] 

 Dec 3 
High 

 674.5 .538 
[2044] 

T4 
 Continue [1523] 

 Abandon 
 302.3 
[1424] 

 Dec 3 
 Low 

 410.8  .462 
[1523] 

T3 
 Expand 

 -90.7 
[1803] 

T3 
 Continue [1642] 

 Abandon 
 317.5 
[1119] 

Dec 2 
 High 

 435.8  .538 
[1803] 

T4 
 Continue [1352] 

 Abandon 
 302.3 
[1254] 

 Dec 3 
 High 

 410.8 .538 
[1352] 

T4 
 Continue [1035] 

 Abandon 
 302.3 
[1093] 

 Dec 3 
 Low 

 250.1  .462 
[1093] 

T3 
 Expand 

 -90.7 
[1233] 

T3 
 Continue [1196] 

 Abandon 
 317.5 
[949] 

Dec 2 
 Low 

 265.4  .462 
[1233] 

 T2 
 High 

  366.1  .538 
 [1540] 

T4 
 Continue [1209] 

 Abandon 
 302.3 
[1111] 

 Dec 3 
 High 

 410.8  .538 
[1209] 

T4 
 Continue [891.9] 

 Abandon 
 302.3 
[950.1] 

 Dec 3 
 Low 

 250.1  .462 
[950.1] 

T3 
 Expand 

 -90.7 
[1090] 

T3 
 Continue [1053] 

 Abandon 
 317.5 
[805.8] 

Dec 2 
 High 

 265.4  .538 
[1090] 

T3 
 Expand 

 -90.7 
[801.2] 

T4 
 Continue [764.8] 

 Abandon 
 302.3 
[879.3] 

 Dec 3 
 High 

 192.4  .538 
[879.3] 

T4 
 Continue [616.1] 

 Abandon 
 302.3 
[804.1] 

 Dec 3 
 Low 

 117.2 .462 
[804.1] 

T3 
 Continue [844.6] 

 Abandon 
 317.5 
[702] 

Dec 2 
 Low 

 161.6  .462 
[844.6] 

 T2 
 Low 

  223  .462 
 [976.4] 

 T1 
 [1280] 

 

Figure 8 – Decision Tree with Option to Expand and Abandon 
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be exercised only in year 3, as can be seen by the lines in bold. Additional options and 

time periods can be added in a straightforward manner. 

Even for a simple model such as this one, the decision tree becomes large very 

quickly. In most practical problems the complexity of the decision tree will be such that 

full visualization will be impossible. However, even large problems with literally 

millions of endpoints for the tree can be solved using this approach. Brandao (2002) 

provides an example of the application of this methodology to the evaluation of options 

associated with a highway project in Brazil that includes 20 time periods and several 

different options, resulting in a decision tree with 2 x 109 endpoints that is solved within 

practical computational times.  

 

5. Conclusions and Recommendations 

The method proposed represents a simple and straightforward way of 

implementing real option valuation techniques using off the shelf decision analysis 

software. The solution is implemented with decision tree tools that many practitioners 

currently use. Additional computational efficiencies can be obtained by using specially 

coded algorithms, although at the cost of having to forgo the simple user interface that 

decision tree programs such as DPL ™ offer, and the advantage of visual modeling and a 

logical representation.  

Suggested extensions include the implementation of recombining lattice 

capability in current decision tree generating software to cut down on processing time. 

While a n period recombining binary lattice has a total of n(n+1)/2 nodes, a similar 

binary tree has 2n+1 -1 nodes, which becomes a significant difference for large values of 

n. On the other hand, the extension of this model to projects with non-constant volatility 

(heteroscedasticity) can be easily implemented, whereas the effect of changes in volatility 

cannot be modeled with a recombining lattice.  

Perhaps the primary caveat regarding this methodology for the evaluation of 

projects with real options relates to the assumptions underlying the Copeland and 

Antikarov approach itself, since the use of decision trees is simply a computational 

enhancement of their concepts. The use of the Market Asset Disclaimer as the basis for 
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creating a complete market for an asset that is not traded may lead to significant errors, 

since the valuation is based on assumptions regarding the project value that cannot be 

tested in the market place. For example, the appropriate choice of the project discount 

rate for the project without options is left to the discretion of the analyst, and the use of 

WACC may not be appropriate for all projects. Therefore, it is important to realize that 

this thorny issue is not resolved by this methodology.  

This approach is also based on the valuation of the project without options, which 

may not be a meaningful concept in the context of some projects, such as those in the 

pharmaceutical industry, where there are natural options associated with the development 

of new drugs. It is simply not clear how one would value a project related to the 

development of a new product in this industry without explicitly recognizing these 

options. To the extent that such hypothetical projects without options are not 

representative of typical projects in the industry, then the WACC may not be an 

appropriate risk-adjusted discount rate for them. In such circumstances, there may be no 

useful guidelines for choosing the risk-adjusted discount rate for the project without 

options. 

Also, the notion that the project returns will vary according to a random walk is a 

very strong assumption. In some cases this may be considered a reasonable assumption, 

but other investment projects may include “lumpy” or discrete events that make this 

assumption untenable, and at best, it may be considered only an approximation. 

Therefore, we would suggest that this approach should be considered for the valuation of 

projects with real options only after a careful consideration of these assumptions in the 

context of specific applications, as it may not be applicable to all situations.  
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