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Zusammenfassung

Um in der heutigen digitalisierten Wirtschaft Prozesse effizient zu gestalten und Dienst-
leistungen an die Kunden zu bringen, sind viele Unternehmen auf Computerprogramme
angewiesen. Jedoch erhöhen die digitalen Werkzeuge nicht nur die Geschäftsmöglichkei-
ten, sondern auch das Risiko Opfer von Cyberangriffen zu werden. Um dieses digitale
Risiko zu managen, existieren verschiedenste Ansätze in der akademischen Literatur als
auch in der Beratungsindustrie. Allerdings beinhalten die meisten dieser Lösungen keine
individualisierten, auf empirischen Daten beruhenden, quantitativen Angriffskostenschät-
zungen. Insbesondere für Kleine und Mittlere Unternehmen (KMU) stellt eine Kosten-
schätzung, aufgrund begrenzter Ressourcen und mangelnder IT-Kenntnisse, eine Heraus-
forderung dar. Die vorliegende Arbeit schließt diese Lücke in der aktuellen Literatur,
indem sie den neuartigen Real Cyber Value at Risk (RCVaR) präsentiert. Bestehend aus
drei Komponenten, liefert der RCVaR unternehmensspezifische, monetäre Kosten- und
Risikovorhersagen für ein Jahr. Die numerische Angabe von Risiko und Kosten lässt ei-
ne individuelle Interpretation nach eigenen Risikopräferenzen zu und erlaubt gleichzeitig
einen bereichsübergreifenden Risikovergleich. Die Auswertung der Kostenvorhersagen auf
der Grundlage von zuvor “ungesehenen” realen Vorfällen zeigt, dass der RCVaR einen
Absoluten Prozentualen Fehler (APE) von 2 % erreicht. Weiter beweisst die Auswertung,
dass das Modell reale, quantitative Kostenmuster von Angriffen widerspiegelt. Um die
Risikokomponente des RCVaRs abzubilden, wurde der neuartige Cyber Value at Risk
(CVaR) in das Modell integriert. Im Gegensatz zu früheren Forschungsansätzen wird der
CVaR nicht durch Monte-Carlo-Simulationen berechnet, sondern mit tatsächlichen hi-
storischen Daten. Die Risiko- als auch die Kostenschätzung des RCVaR sind zudem auf
die Bedürfnisse von KMU zugeschnitten und über eine Webanwendung leicht zugänglich.
Der letzte Beitrag dieser Arbeit addressiert, mit der Einführung einer Federated-Learning
(FL)-Methode, den frappanten Mangel an Kostendaten im Bereich der Cybersicherheits-
Ökonomie. Ein Vergleich der Performance-Resultate von verschiedenen FL-Modellen mit
dem Output traditioneller, zentralisierter, neuronaler Netzwerke zeigt, dass FL erfolg-
reich Kostenvorhersage-Funktionen erlernen kann. Folglich stellt Federated Learning eine
praktikable Lösung für das Problem der Datenknappheit dar. Zusammenfassend lässt sich
sagen, dass der Real Cyber Value at Risk einen neuartigen und kosteneffizienten An-
satz bietet, um quantitative Kosten- und Risikomaße für den Budgetplanungsprozess zu
erstellen.
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Abstract

To compete in today’s digitized economy, companies rely on computer programs to manage
processes efficiently and bring their services directly to customers. However, these tools
increase not only business opportunities but also the risk of falling victim to cyber attacks.
Consulting firms and academic literature provide several approaches to manage this risk
exposure. Nonetheless, most solutions fail to provide individualized, quantitative attack
cost estimates based on real-world empirical data. Especially Small and Middle-Sized
Enterprises (SME) struggle to quantify their attack exposure due to limited resources
and a lack of IT knowledge. This thesis addresses this gap in the current literature by
proposing the novel Real Cyber Value at Risk (RCVaR) framework. Consisting of three
components, the RCVaR provides a monetary, annualized cost and risk prediction for
an individual firm. Thus, addressing the issue of individual risk perception and allowing
cross-domain risk comparisons. Evaluating the cost predictions on previously “unseen”
data from real-world incidents shows that the RCVaR achieves an Absolute Percentage
Error (APE) of 2%. The evaluation further proves that the model reflects quantitative
real-world attack cost behavior. To portray the risk component of the RCVaR, the newly
proposed Cyber Value at Risk (CVaR) is integrated into the model. In contrast to previous
research, the CVaR is not computed with Monte Carlo simulations but on the basis of
actual historical quantitative data. Both, cost and risk predictions, are tailored towards
SMEs and are easily accessible over a web application. The last contribution of this
thesis is a Federated Learning (FL) methodology to address the prevalent lack of real-
world cost incident data in cyber security economics. Comparing the performance of
different FL models against traditional centralized networks suggests that the process can
successfully learn cost prediction functions. Consequently, Federated Learning presents a
viable solution to the data scarcity issue. In conclusion, the Real Cyber Value at Risk
provides a novel and cost-effective approach to obtain quantitative cost and risk measures
that integrate seamlessly into the company’s overall budget planning process.

Keywords - Cyber Security, Cyber Attack Cost, Cyber Risk, Cyber Value at Risk, Federated Learning
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Chapter 1

Introduction

As the world becomes increasingly digitized, companies are adopting new digital tools to
keep up with the rapid pace of change. The COVID-19 crisis has accelerated this trend
[48], with 70% of Small and Middle-Sized Enterprises (SME) reporting to have intensified
their use of digital technologies [111]. However, digitization comes with challenges, such
as migrations of traditional services, training of employees, and exposure to cyber attacks.
Today, cyber security is a top concern for C-suite executives. A survey conducted in 2020
by PricewaterhouseCoopers (PWC) [131] found that 49% of CEOs were highly concerned
about cyber attacks negatively influencing their business in the following year. This result
is astonishing, especially considering that cyber risk outranked the second-placed health
risk during a global pandemic [131]. The fear of falling victim is justified, as data from the
Federal Bureau of Investigation (FBI) [43] and Accenture [3] shows that criminal cyber
activity has been steadily increasing over the past five years.

SMEs, in particular, face difficulties in quantifying the individual risk and impact of a
cyber attack. These companies often lack in-house cyber security personnel and financial
resources. Due to this absence of expertise, SMEs frequently struggle to understand the
current plethora of cyber risk assessment frameworks. Furthermore, these frameworks
tend to focus more on the threat environment than on the economic impact of cyber at-
tacks [133, 47]. Leaving out economic indicators during the analysis can lead to inefficient
protection measures for businesses that must consider a trade-off between security, risk,
and cost [135]. To optimize between these factors in the risk assessment process, Artificial
Intelligence (AI) has been employed successfully. Results from studies in the financial [50],
engineering [59], and cyber security [77, 91] fields present promising evidence for the use
of AI.
Nevertheless, the scientific landscape for approaches that explore Artificial Intelligence
and, more specifically, Machine Learning (ML) to investigate the economy of cyber secu-
rity is scarce. This leaves room for novel methodologies that support SMEs to elicit their
economic costs and risks due to cyber attacks.

Such new approaches are needed as SMEs are still unprepared to face criminals in cy-
berspace. A survey by European Network and Information Security Agency (ENISA) [40]
uncovered that most SMEs in the European Union (EU) use information technologies for
communication and bank transactions, with 80% claiming to process critical information
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2 CHAPTER 1. INTRODUCTION

in their systems. This means that there is a lot at stake for Small and Middle-Sized
Enterprises. Despite the high stakes for these companies, only 70% of SMEs have basic
cyber security products deployed [40]. Additionally, SMEs are of utmost importance on
a macroeconomic level, as they make up 99% of all companies operating in the Euro-
pean Union (EU), according to the ENISA [40]. A similar situation exists in Switzerland,
where SMEs represent 95% of the economy [145]. With their jobs and economic output,
SMEs are undoubtedly crucial to European societies. Therefore, cyber risk assessment of
SMEs is a priority for many countries and even a matter of national security [156, 112].
Consequently, there is a need for cyber risk assessment solutions, which can be operated
without specific knowledge of cyber security concepts and produce easily interpretable
results.

1.1 Description of Work

This Master thesis focuses on the research, design, development, and evaluation of a
new ML-supported approach for estimating the economic impacts of cyber attacks. The
approach is specifically designed for Small and Middle-Sized Enterprises and features an
intuitively understandable output metric.

To achieve this, the business characteristics and their relationship with the costs of attacks
are thoroughly analyzed and described. Based on the analysis, two different models are
developed to estimate risk and expected cost. The risk is estimated by applying the Cyber
Value at Risk (CVaR) measure to the cost distribution, while costs are predicted using a
model that reflects current quantitative cyber loss behavior in related works. Given these
two models, a semi-synthetic dataset of hypothetical firms and their associated costs is
generated. A ML model is then trained and evaluated on the dataset. Privacy concerns
regarding the sharing of attack information are addressed using Federated Learning (FL),
which means only the trained model is shared among participants, not the data itself [95].
The risk and the cost estimating approach, including the ML solution, are summarized
in the Real Cyber Value at Risk (RCVaR) model, which can be accessed through a web
application.

The proposed RCVaR has several benefits over existing risk assessment frameworks in
the cyberspace field. First, the novel approach focuses heavily on short and long-term
economic impact estimation, while current frameworks only touch very shallowly on costs
occurring during or after an attack. Leaving a recognizable gap in the literature, as
different researchers [133, 47] point out. Secondly, the technical solution, which evolved
from this thesis’ theoretical approach, can be operated without any knowledge of cyber
security or even informatics concepts, consequently (i) lowering the need for cyber security
specialists. It also (ii) enables non-cyber technicians to engage with cyber security and
facilitates (iii) a shared understanding of cyber topics in budget discussions. Therefore,
the developed approach solves three of seven cyber security challenges identified by ENISA
[40].

Additionally, the cost and risk estimation are both based on quantitative data from real-
world surveys rather than theoretical concepts. The numerical risk value also addresses
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the challenge of individual risk perception, which is a drawback of current risk-ranking
approaches [49, 83]. Both measures cover a wide range of attack vectors and are presented
on an annualized basis to facilitate integration into annual business planning.

Last but not least, the developed dataset provides a starting point for future research
in cyber economics, which chronically suffers from data scarcity as the Congressional
Research Service (CRS) points out. As identified by the CRS, one reason for this is
companies’ incentive not to report incidents [17, 101]. To tackle this problem at its root,
Federated Learning techniques are employed to allow an anonymous sharing of knowledge
from attacks among SMEs and enable an evolving model.

1.2 Thesis Outline

This Master thesis begins by establishing a knowledge foundation in Chapter 2, with a
particular focus on the concept of Value at Risk (VaR). In the following Chapter 3, the
relevant academic literature and industry reports that focus on cyber attack costs are re-
viewed. The chapter also discusses risk and cost estimation in the literature and examines
the ability of Federated Learning (FL) to learn risk and cost estimation functions.
The main chapter of this thesis (cf. Section 4) addresses three main goals:

First, Section 4.1 presents the primary cost data source before explaining the extraction
process. Next, Chapter 4.2 illustrates the development process of the cost prediction
model. This process includes scaling cost over time (cf. Section 4.2.2) and specific com-
pany sizes (cf. Section 4.2.1). Heavy emphasis also lies on the customization of the cost
through individual company characteristics (cf. Section 4.2.3 and 4.2.4).

Secondly, to address the lack of individually interpretable risk measures, a Value at Risk
based measure is developed in Section 4.3.

The final contribution of this thesis is presented in Section 4.4, where a Federated Learning
(FL) model (cf. Section 4.4.3) is trained on a generated dataset (cf. Section 4.4.1).

The thesis closes by evaluating all three solutions in Chapter 5. First, the cost estimation
model is tested against unseen data. Then, Section 5.2 compares the risk measure’s
distribution against the results from related work. In the end, the Federated Learning
model’s performance (cf. Section 5.3) is evaluated before stating the limitations (cf.
Section 5.4) of the presented approach. Finally, the thesis concludes with an outlook on
possible future work (cf. Section 6.1).
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Chapter 2

Background

This chapter builds the knowledge foundation for the concepts used later in the main
Chapter 4. First, the scope of the cyber attack costs is defined. Next, the concept of the
Value at Risk (VaR) is introduced with a particular focus on cyber economics. Finally,
the theory of Federated Learning (FL) with Deep Learning (DL) models is explained in
detail.

2.1 Attack Costs

This thesis focuses on costs associated with cyber attacks, but understanding what con-
tributes to the total costs of an incident can be difficult. Therefore, this chapter provides
an overview of the multiple pillars that make up the total cost. In the end, the definition
of cyber attack costs used in this thesis is provided.

The two main dimensions by which incident costs are typically classified in the current
literature are shown in Table 2.1. The first dimension, used in [51, 62], divides the cost
into Anticipation, Consequence and Response costs. These dimensions can be seen in
the top row of Table 2.1. The second dimension, often seen in industry reports [2, 3],
distributes the costs into categories: Direct, Indirect, and Opportunity costs. This second
dimension can be viewed along the y-axis of Table 2.1.

Table 2.1 illustrates exemplary costs for each category commonly used in the related
literature [51, 51, 2, 3]. Direct costs are those related to immediate cash outflows, such as
money stolen by criminals or the loss in revenue. On the other hand, Indirect costs refer
to losses incurred as a result of additional resources being expended, such as the cost of
vetting security software before deployment within a firm. Such a process, for instance,
requires an invitation to tender for the contract, which claims time from the management
and other company intern entities. Finally, Opportunity costs stem from lost business
opportunities [2]. For example, if a financial firm experiences an attack, it is likely to lose
the trust of its customers, leading to potential future loss of business. These costs are
especially difficult to measure, as they can have a long time horizon.

5



6 CHAPTER 2. BACKGROUND

The first cost contributor along the x-axis, called Anticipation, covers all costs prior to
an attack. These include spending positions on additional security measures and missed
opportunities due to these actions. The next category, Consequence, is typically related
to the immediate aftermath of an attack. The final category covers costs occurring post-
incident. Depending on the work, this category includes the public’s loss, such as the
investigation of law enforcement authorities and the justice system, or it focuses on the
firms’ post-attack response. A combination of these two views is presented in Table 2.1
to provide a comprehensive picture. As a result, costs in the Response column include
the investigation efforts of law enforcement as well as the possible business disruption of
the firm due to these investigations.

Anticipation Consequence Response

Direct
Cyber Insurance Premium Revenue Loss Lawyer Fees
Price for Security Measures Theft of Funds Regulation Fines

Indirect
Vetting of Security Software Repair of Infrastructure Investigation
Employer Cyber Training Monitoring of the Attack Documentation

Opportunity
Product R&D Intellectual Property Loss Business Disruption
Investment in New Project Reputation Loss Higher Cost of Capital

Table 2.1: Common Cyber Cost Dimensions in Literature

Since this work’s model is based on real-world numbers from industry reports, their def-
inition of costs has been adopted. Therefore, the model output covers the firm specific
Direct, Indirect, and Opportunity costs of the two last columns in Table 2.1. Furthermore,
it is noteworthy that the two steps, Consequence and Response, can be divided further
into subcategories, which are discussed in detail in Section 4.1.1. It is also important to
remember that the costs are not solely focused on a single attack vector but rather cover
all types of cyber attacks included in the survey reports. Since assigning costs to attack
vectors is a complex endeavor, the reports do not provide an exhaustive list of covered
attack vectors.

Ultimately, the costs reflect the estimated annualized costs in United States dollars (USD).
Conversion of the amount to local currency is subject to currency risk and is outside the
scope of this thesis. While analyzing the cost output of the RCVaR, it is also important
to understand that not all expenses are covered. More specifically, costs occurring in the
Anticipation stage, costs due to unsuccessful attacks, expenses related to compliance, and
investments in new security measures are not included in the cost prediction of the model.

2.2 Cyber Value at Risk (CVaR)

Cyber attack costs have significant impact on organizations considering that the total
loss due to attacks is estimated to be one percent of global GDP according to Allianz, a
leader in corporate insurance [5]. Hence, it is not surprising that cyber risk management
is crucial for risk officers. In recent years, the scientific community has paid particular
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attention to the Cyber Value at Risk (CVaR) measurement. The CVaR is a quantile-
based risk measure that originated from the Value at Risk (VaR), which was outlined by
Markowitz in 1952 and gained widespread use in finance in the 1990s [61, 119, 37]. VaR
has three dimensions: Confidence, also known as probability, worst-case loss, and a time
frame [119].

Figure 2.1: Value at Risk Representations Based on [160]

According to the efficient market hypothesis (EMH) [41], the returns of assets in efficient
markets follow a random walk, which morphs into a Brownian motion in continuous time
[84]. Therefore, it can be argued that returns are normally distributed, as depicted in
Figure 2.1. If the distribution in Figure 2.1 represents monthly returns, the monthly
return at quantile α can be calculated. The result is the Value at Risk with confidence
1−α over a time frame of one month with a worst-case loss of the return at the respective
quantile.

In the year 2015, the cyber resilience initiative of the World Economic Forum (WEF) [159]
proposed the idea of using the Cyber Value at Risk as a risk benchmark across different
domains and industries [1, 119]. Compared to traditional “scoring” approaches in the field
of cyber security (cf. Section 3.1), CVaR offers several advantages. First, the complexity
of the risk can be represented by a single, individually interpretable number, allowing
C-suite executives to scale risk in the cyber domain to their risk appetite [1]. Residual
risk, which managers are unwilling to take on, can then be outsourced to cyber insurance
companies [119]. Secondly, quantile measurements are well established and therefore allow
for comparison of risks across different domains, e.g. financial, operational, and cyber
risk. Additionally, due to the experiences in the financial sector with the VaR, there exist
multiple frameworks and models that build upon the theory of quantile risk measurements.
The CVaR, as a quantile risk quantifier, is compatible with these frameworks, allowing a
user to conduct further risk analysis.

However, the CVaR model inherits not only VaR’s benefits but also its drawbacks. The
most severe limitation imposed is that the CVaR is a backward-looking measure, relying
on historical data and assumptions, which do not necessarily hold in the future [1]. For
instance, just because an event has never occurred in the past does not mean it has
a probability of zero in the future. Another often overlooked drawback is that “Black
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Swan” events, which are infrequent events with a massive impact, are not represented
well by past data. Meaning fat tails of the distribution, signalized through the kurtosis,
are disregarded by the Cyber Value at Risk [161]. A solution to this problem could be
the expected shortfall, also known as the conditional VaR, depicted in Figure 2.1. The
expected shortfall represents the expected loss under the condition that the α-quantile is
pierced; hence it takes losses in the tails into account.

When the World Economic Forum presented the concept of the CVaR, they did not pro-
vide a methodology for calculating it. Instead, they identified specific components the
model should encompass, such as the Vulnerability of assets, Assets under threat, and
Profiles of attackers to which the assets are exposed [1, 159]. In a later report [157],
Deloitte calculated the expected loss as well as the CVaR for different sectors in the dutch
economy, but with several underlying limitations. For instance, the authors explicitly
excluded Small and Middle-Sized Enterprises and certain sectors such as construction or
real estate. Their approach uses a combination of real-world data and estimates to de-
termine the threat profiles for information assets. Based on these likelihood estimations
and the identified asset values, the expected value and the Cyber Value at Risk for the
industry sectors are calculated. Nevertheless, they fail to provide a general model which is
applicable to individual organizations. To close this gap, a recent study from the Oxford
university [37] developed a model which calculates the CVaR based on four pillars: asset
values, harm probability, threat probability, and effectiveness of protection. Once these
values are determined, mainly through estimations, a Monte Carlo simulation is run to es-
tablish a distribution, and the CVaR is then derived from that distribution. Both Deloitte
and Oxford emphasize in their contributions that there is an enormous lack of data to
calculate probabilities and distributions [37, 157], resulting in many probability estimates
that can be skewed due to, for example, behavioral bias [74]. Because of this complexity,
the calculation of the CVaR is costly and complicated, which is why it is not commonly
used in the industry [119]. One company that has the CVaR in its product palette is
MARSH [93]. They use a similar approach to the Oxford study by collecting relevant
data at the client’s location and estimating the missing probabilities before deriving the
loss distribution through a Monte Carlo simulation. This process requires a high level of
trust from the client, as he must provide MARSH with critical company data.

To summarize, the Cyber Value at Risk is a relatively new measure in risk management.
Its complexity and the lack of data hinder it from being used broadly and in a continuous
controlling setting [119]. A particular gap in CVaR solutions exists for Small and Middle-
Sized Enterprises.

2.3 Machine Learning

Artificial Intelligence (AI) is a field comprising various subfields, one of which is Deep
Learning (DL). Deep Learning (DL) has gained attention in the past decade due to its
performance accuracy, the availability of data, and the increased computing power [7].
Deep Learning models can have a multitude of architectures but on the smallest level
consist of neurons. These are connected to one another through weights and organized into
layers. The term Deep Learning refers to the fact that these layers are often stacked on top
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of each other to achieve a “deep” model. During the forward propagation of the learning
process each neuron’s output is weighted, summed, and passed through an activation
function to introduce nonlinearity [7]. The forward pass results in a predicted value, which
is compared to the actual value using a loss function. To achieve the smallest difference
between the actual and predicted value, the loss function is minimized by updating the
weights in the opposite direction of the gradient. This is done by subtracting the gradient
from the weights.

Traditionally, Deep Learning models were fed with vast amounts of data to achieve optimal
performance. This involved collecting data in a central entity and then training the Deep
Learning model on this data. However, this approach can fuel privacy concerns due to
multiple reasons. First, the data might be sensitive and, therefore, should not leave the
personal device. Secondly, the server, with all data located there, presents a single point
of failure for attacks. One data breach might compromise all observations. To address
this issue, Google introduced FL in 2016 [99, 64]. Figure 2.2 demonstrates the Federated
Learning process using the example of cyber attack costs (cf. Section 4.4.3).

Figure 2.2: General Federated Learning Process
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In this thesis, Federated Learning was conducted with only two clients as a proof of
concept. Each client has its own dataset of business characteristics, which serve as input
features, and expected cost, which serve as the target variable. The process of generating
data in this format is described in Section 4.4.1. The data is stored in a predefined format
in a CSV document and is kept on the client’s device. Since both clients have the same
type of data, the Federated Learning process can be classified as horizontal Federated
Learning [64]. The process begins by sharing a pre-trained model (cf. Section 4.4.3), which
is located on the server, with all clients. They then perform the DL algorithm described
above on their local devices for several epochs. After the clients have trained the model,
the weights are encrypted and sent back to the server, while the training data remains
on the client’s device. On the server, the weights are aggregated by averaging before
redistributing the model to the clients. Such an iteration is called“round” in the Federated
Learning process. After several rounds, the final model, trained in a decentralized manner,
is available on the server [64, 99].

Federated Learning has the ultimate benefit of achieving accurate models while maintain-
ing privacy during the learning process. Additionally, it opens new opportunities in the
Internet of Things (IoT) field. However, some drawbacks of this new learning method
are higher bandwidth requirements for sharing the model. It is also challenging to en-
sure compliance with data protection regulations. Specifically, how to delete a client’s
contribution upon his withdrawal from the FL process mid-training.



Chapter 3

Related Work

This chapter overviews the related literature on attack cost estimation, Artificial Intelli-
gence for risk assessment, and Federated Learning. First, the research of cost estimating
methodologies is split into two chapters, with one section focusing on economic-research
papers while the other prioritizes industry reports. Next, AI-based methods’ role in risk
and cost prediction are presented. Finally, the chapter closes by pointing out the gap in
the affiliated literature and how this thesis will address it.

3.1 Economic Approaches for Cyber Security

Current literature provides a flood of risk assessment and cyber security investment frame-
works. Two of the most well-known cyber security frameworks are from the National
Institute for Standards and Technology (NIST) and the International Organization for
Standardization (ISO). The guidelines specified in ISO 27005 [70] focus on information
security risk management. Its concepts are based on other reports from the ISO 27000
family (ISO 27001 [68], ISO 27003 [69], etc.). The NIST framework [108] comprises of
three subparts: Core, Implementation Tiers, and Profiles. Implementation Tiers repre-
sent a methodology to rank a company’s security processes, whereas the Profiles represent
different states, e.g. current-state or target states. The Core consists of different cyber se-
curity activities, which help organize the risk assessment. Nevertheless, these frameworks
are hard to apply to SMEs due to their high level and complexity. None of these models
provide a practical approach to assign a numerical measure to risk. To address this need,
the Information Assurance for Small and Medium Enterprises Consortium (IASME), in
association with the National Cyber Security Center (NCSC), developed a practical ques-
tionnaire [67] for SMEs to evaluate their cyber risk. Another more businesslike method-
ology is presented by the SecRiskAI solution [49]. Its neural network estimates risk based
on business and cyber security characteristics, such as security investments, revenue, or
known vulnerabilities. One issue with this model is that it is trained on a dataset that was
artificially generated using a theoretical formula with no quantitative evidence to back it
up. Furthermore, the formula makes several assumptions that may not hold in reality,
such as a linear relationship between input and risk. In the end, the model classifies risk,

11
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similar to the visual tool for investment analysis [66], into one of three abstract categories:
Low, Medium and High. This benchmark gives a baseline for decision-making but is still
too abstract to be used in a corporate risk analysis.

In comparison to the cyber risk assessment frameworks, far fewer out-of-the-box ap-
proaches to estimate the cost of cyber incidents exist. Two frameworks to measure the
monetary loss due to cyber attacks are presented in SEConomy [135] and [51]. In the
SEConomy paper [135], the overall economic impact is estimated in the fifth step of the
framework based on inputs such as threat cost, mitigation cost, and initial security invest-
ments. Detailed formulas for each of these inputs are also provided through the frame-
work. Nevertheless, to apply the framework, the investigating entity needs to estimate
the threat cost for each role and system, which is a challenge in itself. A similar approach
was proposed in [51], where the authors identified cost contributors such as insurance,
repair, and intellectual property fraud and classified them among two dimensions: The
time the cost occurred and the type of the cost. The ensuing extensive list of cost types
aims to determine a company’s overall cost by estimating the individual contributors and
summing them up. However, numerical values or guidelines for obtaining monetary values
are not provided.

Both risk and cost are essential input factors for cyber security planning and investment.
CyberTEA [47] is an approach consisting of a methodology, a framework, and a set of
solutions for cyber security planning. In the Decision Layer of the proposed framework,
the costs are estimated before finally recommending a resilience-improving action. The
economic impact is calculated using the SECAdvisor proposed in [113]. The SECAdvisor
calculates the overall cost by multiplying the monetary value per data record, determined
by a survey from IBM, with the number of records. Furthermore, the value of a web server
is estimated as the 30-fold of the monthly profit generated over the web store. Compared to
the previous frameworks, the SECAdvisor provides a numerical cost number rooted in the
real world. A shortfall is that the economic costs are only tailored to a company by altering
one parameter: The number of records. A similar approach was followed by Li et al. [83]
in developing their visual tool for cyber security/investment planning. They assumed the
monetary value of a record, respectively a loss, to be the monetary penalty defined in
policy regulations such as the EU’s General Data Protection Regulation (GDPR) [38]. A
particularly significant part of cyber security planning is deciding on how much a company
should invest in cyber security. The most established frameworks for this process are the
Return on Security Investment (ROSI) measure [39] and the Gordon-Loeb model [54].
The ROSI illustrates the monetary gain of the security measure relative to the invested
capital. To get the nominator in the formula, one has to estimate the annual monetary
loss (ALE). Unfortunately, the ROSI framework does not provide ways to estimate it for
cyber incidents. The other major approach concerned with cyber security investment is
from Gordon and Loeb [54]. The model suggests that a company should only invest 37%
of the expected loss in security measures. The expected loss is defined by their paper as
the vulnerability multiplied by the potential loss. However, no guidelines are provided on
how to estimate these numbers in a corporate environment. Similarly vague on how to
estimate costs are the frameworks presented in [18] and [66].

A more detailed look into the cost of cyber crime is provided by Anderson et al. [6], whose
paper can be considered the first systematic study of costs. In their work, they distinguish
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between Direct, Indirect, and defense costs as well as between different types of cyber
crimes. The heart of the research is a table of collected costs from multiple sources such
as CSI, ENISA, and Symantec statistics. But even with extensive research some numbers
had to be approximated, with the report stating that 9 of the 28 cyber-crime-type costs
include highly uncertain estimates. It is also noteworthy that the authors focused on the
combined public and firm costs for the United Kingdom, meaning no numbers regarding
individual company losses are displayed.

Despite the difficulty of estimating the cost for corporate entities, some solutions which
provide customized numerical estimates exist. Two approaches researched in the scope
of this thesis are the ReCIst [57] and the questionnaire of the cyber security osservatorio
[26]. The ReCIst is a project that provides a visual tool to investigate cyber security
investments by comparing a measure’s benefits against its cost. The system calculates
costs based on a range of complex inputs, including the impact of an attack on revenue
and factors related to the likelihood of the attack. Estimating these inputs accurately, as
acknowledged by the authors, can be cumbersome. The Cyber Security Osservatorio [26],
on the other hand, uses a questionnaire, which does not require estimates of cyber attack
costs1.

The main problem in researching the cost of cyber incidents is the lack of publicly available
data. There are several reasons for this. First, victims are incentivized not to reveal their
breaches [101, 17]. Secondly, it is hard to quantify Indirect and Opportunity costs [17].
To address the scarcity of data, the Department of Homeland Security (DHS) has started
an initiative [155] to collect data on cyber security incidents, but the current status of
this database is unknown.

An alternative approach to estimate costs uses stock prices. According to the efficient
market hypothesis [41], new information is immediately priced upon release. Furthermore,
stock prices, in theory, reflect not only the company’s current value but also the overall
market sentiment of future business development. Therefore, market expectations can be
a good proxy for cyber incident costs since they incorporate the market’s expectations
of Indirect and long-term costs. Following this theoretical approach, Cavusoglu et al.
[19] discovered that stock prices drop 2.1% within two days after an attack. Tweneboah-
Kodua et al. [153] found in their paper that statistically significant price fluctuations of
sector-specific stocks can be observed after a cyber incident. Nevertheless, the study also
points out that these changes can only be detected in particular industries. The most
robust evidence of a price impact due to a cyber attack is found in financial industry
stocks.

Throughout the research of related papers, it becomes clear that none of the papers above
presents numerical data on cost influential factors. Furthermore, most papers base their
cost estimations on something other than real-world data or leave the estimation to the
company itself. This thesis addresses this gap and provides a solution based on real-world
data to assess and predict a company’s incident cost.

1The website of the Cyber Security Osservatorio [26] was very unreliable during the test run conducted
in the scope of this thesis. The questionnaire, did not provide results instead https-errors were thrown.
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3.2 Industry Reports on Cyber Attack Costs

As pointed out in the previous section, current academic research struggles to classify the
cost or risk numerically. However, corporate risk management requires an understand-
able numerical metric to estimate the impact of an attack. To address this need, major
consulting and technology firms conducted surveys to develop cost estimations on which
companies can rely during their cyber security decision-making process. Most of these
surveys were conducted with the help of the Ponemon Institute [85], an independent or-
ganization specializing in data privacy and information security. It is widely considered
the leading institute regarding economic cost estimation following cyber incidents [89]. In
the scope of this thesis, all publicly available reports [126, 127, 128, 129, 130, 139, 85]
related to attack costs of the past 12 years of the public Ponemon library are investigated.
Nevertheless, the main focus lies on IBM’s 2022 [27] and Accenture’s 2017 [2] reports due
to their recency and the number of cost-influential factors (e.g., country or organization
size) described numerically.

To determine these cost factors, Accenture surveyed 2182 individuals from 254 companies
across seven countries2. Their research focused on costs related to“cyber crime” incidents.
They estimated the average cost per annum for a company of the sample to be $ 11.7
million in the year 2017. Their sample group only included larger companies from various
sectors. As can be observed in Table 3.1, the survey identified the organization size,
industry sector, region, year, and security measures as possible influences on the average
cost. But Accenture also states that they omitted other essential variables. However,
they do not explicitly mention which variables were omitted. Additionally, IBM’s survey
confirms some influential factors mentioned by Accenture and adds new variables that
impact the cost.

Regarding the influence of operational processes on costs, the IBM work is more detailed.
It shows that risk management, remote work, cloud services, and their security, sufficiently
staffed teams, as well as breaches in the supply chain, influence the average cost. All costs
in the IBM report are expressed as the average per-company breach cost, as opposed to
Accenture’s per annum incident cost-unit. A data breach defines an event that puts
an individual’s sensitive data at risk. IBM estimated the average per-breach cost for
2022 to be $ 4.35 million. The estimation is based on their survey of roughly 3600
individuals from 550 enterprises. Their sample included companies from 17 regions3 and
17 sectors. Most sectors are similar in both studies, with IBM having the additional
sectors Entertainment, Media, Research, and Pharmaceuticals. Table 3.1 summarizes the
numerical cost-influencing factors provided in both reports.

Accenture [2] concludes its 2017 report by identifying a “value gap” between the spending
on a security measure and its cost-saving ability. The report locates the highest potential
in the usage of Security Intelligence Systems, which collect system data, calculate risk-
related measures and display them [144]. IBM, on the contrary, sees remote work and
cloud environments as the biggest challenges for the company’s data security. To address

2United States, Germany, Japan, United Kingdom, Australia, France and Italy
3United States, India, United Kingdom, Brazil, Germany, Japan, France, Middle East, South Korea,

Australia, Canada, Italy, ASEAN, Latin America, South Africa, Scandinavia, Turkey
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these challenges, the report recommends, among others, Identity and Access Management
(IAM) products and Data Encryption Technologies. Furthermore, the report recognizes
the potential to reduce costs by implementing Security AI and Automation products,
Incident Response Plans, and Zero-Trust frameworks [27].

Both studies are very similar regarding their methodology. Both base their results solely on
survey information. Additionally, both claim to capture the Direct, Indirect, and Oppor-
tunity costs separately. Furthermore, the two investigate only cost attributed to activities
in the two categories Consequence and Response (cf. Section 2.1). These activities are
further split into“cost activity centers”and roughly include Detection, Investigation, Con-
tainment, Post Breach Activities, and Lost Business Revenue. Both reports have many
similarities due to their Accenture’ and IBM’s partnership with the Ponemon Institute
during the development.

In 2019, Accenture partnered again with the Ponemon Institute to release the cybercrime
report of 2019 [3]. The research involved extensive data collection, with 2600 individual
interviews from 355 companies operating in 11 countries4. However, the report presents
fewer cost-influencing facts as the previous report from 2017. Overall, the cost con-
tributors country, industry, sector, attack type, and security measures on the costs are
identified. Additionally, a composition of costs per attack type into the categories: Busi-
ness Disruption, Information Loss, Revenue Loss, and Equipment Damage are shown.
The report also states clearly that Information Loss, due to theft or destruction is the
most significant contributor to the average annualized per-company cost of $ 13 million.
Accenture further discovered that attackers tend to gain access to IT systems through
supply chain partners. This poses new challenges, especially for large, interconnected
companies. The report concludes that the most prevalent measure to keep attacks and
costs low is actively living a security culture, including having individual accountability
and cyber security training. Additionally, the authors recommend investing in informa-
tion protection, such as Cryptography and Detection Automation Technologies, in order
to reduce monetary consequences of attacks.

The Accenture report from 2019 was the last cost of cyber crime survey conducted by Ac-
centure. The successor reports focus on capturing trends in the threat landscape and inves-
tigating the spending on different security measures. For instance, Accenture’s 2021 cyber
resilience report [10] emphasizes the need to include security considerations in strategic
planning by continuously measuring threats and security, particularly concerning cloud-
based solutions. Other Accenture reports shed light on federal agencies’ cyber security
[42], and business leadership in the current IT security environment [30].

4United States, United Kingdom, Germany, Japan, France, Brazil, Canada, Australia, Spain, Italy,
Singapore
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Table 3.1: Summary and Comparison Between the Two Most Established Cost Reports from Accenture [2] and IBM [27]

Accenture (2017) [2] IBM Report (2022) [27]

Business Specifications Data 2nd Unit Data 2nd Unit
Characteristic of Information form type variable type variable

Security Measure Effectness of specific Cat. Security Rank
Security Measures spending
Cost savings per Cat. ann. USD Cat. Time comparison avg. USD
security measure (2020-2022) per breach
Security effectiveness Cat. Country ann. USD
Score (SES)

Time Increase of avg. Num. ann. USD Num. avg. USD
cost (2013-2017) per breach

Region Avg. Cost Cat. Time comparison ann. USD Cat. Time comparison avg. USD
per region (2016-2017) (2021-2022) per breach
Costs per attack Cat. Threats ann. USD threat
per country cost per country

Organization size Influence of Organization Cont. Time comparison ann. USD
size on cost & Cat. (2013-2017)
% spend on threats Cat. Threats % of total
for two sizes cost per threat

Industry Sector Cost per Cat. ann. USD Cat. avg. USD
Sector per breach

Operation General factors Num. avg. USD
influencing cost per breach
Risk management Cat. avg. USD
influencing cost per breach
Influence of Supply Cat. Time to avg. USD
Chain data breach resolve in days per breach
Cloud model and its Cat. Time to avg. USD
security measures resolve in days per breach
% working of Num. avg. USD
employees working remotely per breach
Sufficiently staffed Cat. avg. USD
security teams per breach

Threats Attack type Cat. Time comparison % of sample
experienced (2016-2017) has experienced it
Costs Cat. ann. USD Cat. Frequency of avg. USD
per threat of attack in % per breach
Avg. time Cat. Time comparison Days Cat. Time comparison (2016-2022) Days & avg.USD
to resolve threats (2016-2017) & Cost & attack type per resolve period

Cost composition Composition Num. Time comparison % of total Cat. Time comparison avg. USD per breach
of cost (2015-2017) cost & category (2017-2012) and category

Ann. = Annualized, Avg. = Average, Cat. = Categorical (Presented as Histogram)

Num. = Numerical (Presented as single Numbers) , Cont. = Continuous (Presented as continuous Line Graph)
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A report conducted by Kaspersky [72] independently of the Ponemon Institute in 2013
supports the findings of Accenture and IBM. Kaspersky’s main goal was to summarize
the types of data breaches companies experience and how they protect themselves against
them. Additional emphasis lies on the company’s perception of the current cyber security
environment. The work only presents numerical results for two influencing factors of cost:
Region and attack type. The numbers for those factors were collected by interviewing
2895 IT professionals among 24 countries5. Based on this inquiry, the average per security
breach impact was estimated to be $ 649’000 for larger enterprises. An essential difference
from the other reports is that Kaspersky gives a separate cost approximation for SMEs ($
50’000 per incident). It is also the only report researched in this thesis, which looked at
the company’s incident costs in China and Russia. In the end, Kaspersky identifies two
major causes of incidents: Bring-your-own-device policies (BYOD) and internal leaks due
to insider attacks or poor training. Solutions to address these problems include employee
security training and targeted investments in professional IT security applications.

The last industry report investigated in the scope of this thesis was conducted by De-
loitte [102] in 2016. The main focus of the report lies on researching Indirect cost of
cyber attacks, e.g. impact on customer relationships, insurance premium increases, and
devaluation of the brand name. Unlike the previously presented reports, Deloitte bases
its monetary valuation of these impacts not on surveys but on estimations of its in-house
industry experts. They further support their claims with data from the Ponemon Insti-
tute [85]. To present their cost estimations, Deloitte demonstrates the cost calculation of
a cyber attack through two fictional scenarios: A data breach on a healthcare provider
and an attack on a manufacturer. The total scenario costs approximate to $ 1.679 and $
3.258 million. To improve cyber resilience, the report recommends more in depth cyber
risk management, which includes scenario stress tests [102]. Furthermore, investment in
Detection Technologies and the development of Incident Response Plans can shorten an
attack’s life cycle and decrease costs.

Other reports which deal with costs of cyber security include the Ponemon reports from
2014 [129], 2016 [130], 2017 [139], as well as Zurich Insurance’s 2015 report [89]. The
information of these reports is not as recent as the data introduced by Accenture [2, 3,
10, 42, 30] or IBM [27]; however they help gain a picture of cost development over time.

3.3 AI-Based Approaches for Risk Assessment

Due to the lack of cost-related data, using machine learning to estimate the expected costs
of cyber attacks is difficult. Therefore, this thesis could not find a ML model in recent
literature that predicts cyber incidents’ costs. Nevertheless, there are countless examples
of machine learning algorithms in risk assessment and cyber threat detection. One solution
which uses ML to determine the cyber risk exposure of a company is the SecRiskAI
[49]. During the development four machine learning algorithms: Decision Trees, Support

5United States, Canada, Mexico, Columbia, Peru, Chile, Brazil, United Kingdom, Germany, France,
Spain, Italy, Greece, Czech Republic, Hungary, Saudi Arabia, United Arab Emirates, South Africa,
Russia, China, Japan, India, Australia, Kazakhstan.
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Vector Machines, K-Nearest Neighbor, and a Multi-layer Perceptron Neural Network were
evaluated. The paper concludes that all algorithms achieve an accuracy of over 95%.
However, it is worth noting that all the models were trained on synthetic data, so the
function learned by the models was also artificially constructed and, therefore, previously
known. In their paper, Abishek and Kumar [140] used a similar approach to identify risk
factors and apply machine learning models such as Decision Trees or Randomizable Filter
Classifier to investigate threats specific to the cloud computing domain.

Another paper by Chih-Hung et al. [63] argues that current cyber risk assessment heavily
relies on cyber security specialists and their domain knowledge. To lower this dependency,
which is also pointed out by ENISA [40], they propose a fuzzy scoring system that returns
a risk ranking. The authors achieved promising results when evaluating their novel sys-
tem on a real-world cyber risk dataset. Besides a lower dependency on rare cyber security
specialists, introducing AI into cyber risk management has additional advantages, as a De-
loitte report [31] from 2018 points out. Deloitte analyzes that when Artificial Intelligence
is included in the risk management process, the procedure becomes more forward-looking
than without AI.

Supplementary to cyber risk management, ML is also used in other sectors to manage
different risks. A summary of engineering industries and their respective algorithms can
be found in Table 3.2. It is noteworthy that only the most frequent algorithms used in risk
assessment, according to a meta-study conducted in 2020 [59], are listed. Besides engi-
neering industries, ML techniques for risk management are also central in other economic
sectors, such as the financial industry [79, 50, 97].

Industry Algorithm Paper

Construction
ANN [33]
SVM [80]
DT [53]
RF [152]

Railways
ANN [44]
SVM [81]
DT [142]
RF [15]

Mining
ANN [143]
SVM [143]
DT [143]
RF [52]

ANN = Artifical Neural Network, SVM = Support Vector Machine

DT = Decision Tree , RF = Random Forest

Table 3.2: Risk Assessment ML-Algorithms in Different Industries [59]

Since Machine Learning has multiple applications throughout different domains, it is not
surprising that Federated Learning (FL) is also commonly used to protect privacy during
model training. With its sensitive but volume-rich data, the healthcare sector is destined
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for Federated Learning. Brisimi et al. [14] developed a decentralized optimization frame-
work, which allows different data holders to jointly train and predict hospitalizations for
cardiac events without sharing their data. Further, research by Kim et al. [75] demon-
strates on medical data that Federated Learning is competitive with centralized trained
models in terms of accuracy while still adhering to privacy restrictions. Other applications
for FL include visual inspection of products in engineering processes [58], credit risk as-
sessment [73], and protection of drones [103]. A more extensive list of Federated Learning
applications can be found in the paper by Li et al. [82].

3.4 Discussion

The gap in the literature discussed in Sections 3.1, 3.2, and 3.3 serves as the foundation
for the development of this thesis. Therefore, this section discusses the most significant
findings from related literature. The main objective is to develop a comparable and
interpretable Cost Estimation Model based on real-world data. The model should be
tailored towards companies without specific cyber security knowledge, more specifically
SMEs. The second goal of this thesis is to provide companies with a Risk Measure that
allows them to evaluate risk in consensus with the principles for risk measures established
by the World Economic Forum [159]. Finally, this thesis addresses the lack of data in
the field of cyber security economics by introducing a Federated Learning (FL) Model
that allows for sharing knowledge about economic impacts without revealing sensitive
information.

3.4.1 Cost estimation

As shown in Section 3.1, very little research about attack costs is available in the cur-
rent academic literature. Examples of work that provide discussions on cyber security
economics are Anderson et al. [6], SEConomy [135], and SECAdvisor [113]. From these
three, only the SECAdvisor provides the option to tailor costs to the company by spec-
ifying the data type and the number of records [113]. However, the approach is limited
since it focuses solely on data breaches, which excludes important attack vectors such as
ransomware, which primarily aims to disrupt ongoing operations. To account for more
factors such as residence, industry sector, and a multitude of attack types, a company
has to conduct complex analysis of current industry reports from IBM [27] or Accenture
[2, 3, 10].

In these reports, the relationships between average costs and influencing factors (cf. Table
3.1) are numerically described. One issue with the reports is that they do not provide
guidance on how to combine the average costs for various factors, units of measurement,
and dates. For example, suppose an American company has an average cost of $ 21.22
million, and the average cost for companies in the financial sector is $ 18.18 million. In
that case, it is unclear how an estimator should combine this information. Furthermore,
how should one scale the cost over time and different company sizes?
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This thesis addresses this gap by developing a parameterizable cost estimator based on
real-world data from various sources [2, 3, 10, 27, 126, 127, 128, 129]. The prediction can
be established without specific knowledge in the cyber security domain, which benefits
Small and Middle-Sized Enterprises. Furthermore, the estimator’s results are scaled to
the company size at a certain point in time, allowing predictions of future costs.

3.4.2 Risk Estimation

Although the gap in economic cyber impact estimation is clear, the expected cost value
can not be analyzed isolated from risk as current approaches or consultant reports do.
Cyber risk is often expressed in some score variants, such as SecRiskAI [49] classifying risk
into the categories low, medium, and high. Another example is Li et al. [83], which uses a
score between 1 to 100 to categorize risk. The issue with such approaches is that they do
not account for individual risk perception and assume a global score. As stated in [16], risk
perception is a highly personal decision-making process based on an individual’s frame of
reference developed over a lifetime. Therefore, a company with a high-risk score in the
SecRiskAI approach might perceive this score as desirable, while another company views
medium risk as intolerable. Comparing these two companies with the same benchmark,
which assumes low risk as the best possible outcome, can lead to wrong conclusions.
This situation could also be shown using Figure 3.1: The absolute variance of $ 3650
in Figure 3.1a might be considered high cyber risk by the scoring benchmark. However,
if the company’s overall revenue fluctuates by an absolute variance of $ 100,000 due to
risk, the company may perceive a cyber risk of $ 3650 as relatively small. On the other
hand, a company with an overall risk in the form of an absolute variance of $ 36 might
consider the cyber risk of Figure 3.1a as unbearable. It is, therefore, unpractical to use risk
measurements from related work researched in the scope of this thesis. Another downside
of risk scoring is that quantitative categories are complicated to compare to risks of other
domains. Hence, it violates an essential principle of the cyber risk concept established by
the cyber resilience initiative [159].

The reason why the expected value of costs cannot be viewed independently from risk is
shown in Figure 3.1, which highlights two hypothetical probability density distributions
of annualized cyber costs of a company. In the context of this example, cost includes in-
vestment costs into security measures and the expected costs of cyber attacks, thereby the
problem consists of two variables (risk and cost) with an assumed partly independent, pos-
sibly inverse, relationship. Since the prices for security measures are company-individual
and often publicly available, this thesis focuses solely on the expected cost and risk esti-
mation. In this simplified demonstration, the distribution on the left 3.1a has the lower
mean, hence the lower expected value of costs. However, what can also be observed is
that the variance of the highly right-skewed distribution is more significant than in Figure
3.1b. In this scenario, the company can now decide which distribution it prefers based
on the cyber security investments for the coming year. A more risk-averse company will
invest more into security, leading to higher costs but much less spread around the mean.
Whereas another company is willing to take the higher risk with the benefit of lower total
costs. This hypothetical scenario depicts that a company cannot opt for a solution based
only on risk or cost but must optimize between them.
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(a) Mean: 110, Variance: 3650, VaR: 225.996 (b) Mean: 128, Variance: 36, VaR: 139.6

Figure 3.1: Hypothetical Cyber Cost Distributions

One risk measure that solves the issue of scoring-based risk measures is the variance.
The variance is individually interpretable and can be compared across different domains.
Nevertheless, variance is a rather abstract statistical measurement, which is challenging
to interpret depending on the specifics of a distribution. It further is a two-sided risk
measure, which means it also accounts for upside (lower cost) risk. Since a company would
not classify lower cost than expected as risk, the variance is not an ideal risk measure.
Therefore, it contradicts the requirements for cyber risk measures set forth by the World
Economic Forum [159], particularly regarding ease of interpretation and transparency. An
alternative, which originated in the financial sector, is the Value at Risk (cf. Section 2.2).
As one observes in Figure 3.1, the VaR scales similarly to the variance. Nevertheless, with
its time, value, and probability dimensions, it is an easily understandable risk measure
with a lot of research background in other fields, mainly the financial sector.

Currently, there is very little research on the Cyber Value at Risk, with the most recent
research using Monte Carlo simulations [37, 93] to determine the distribution and the
desired quantile. The process of estimating specific input probabilities to the Monte Carlo
simulation is cumbersome and expensive [37, 157]. In addition, they require intimate
knowledge of the company’s IT systems and extensive experience in the field of cyber
security. These factors make it difficult for companies with low cyber security budgets,
such as Small and Middle-Sized Enterprises, to attain CVaR numbers.

To address this gap, this thesis produces the Real Cyber Value at Risk (RCVaR) as a risk
measurement unit. The RCVaR is based on the theory of the VaR, hence is comparable
across domains and individually interpretable. It further leverages real-world data from
industry reports (cf. Section 3.2) to develop probability distributions from which the α
quantile is calculated. In consequence, the RCVaR does not rely on harm, security ef-
fectiveness, or thread probability estimations from entities with cyber security expertise.
Using total costs, consisting of the expected attack cost estimation and the publicly avail-
able prices for security measures, and risk estimation allow companies to determine their
optimized security plan. Therefore this thesis, with its expected cost and risk estimation,
creates the foundation to conduct risk-cost considerations in Small and Middle-Sized En-
terprises, allowing them to be prepared for a new digitized economy and to face their
adversaries in cyberspace.
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3.4.3 ML and FL for Information Sharing

The proposed approach in this thesis heavily relies on the accuracy and availability of data.
Even though Section 3.2 presents an extensive summary of available data from different
sources, data scarcity remains. The undersupply of data in cyber security economics is a
well-established problem [17, 101]. The lack of data stems from the incentive of companies
to hide data breaches and cyber incidents since their publication could trigger reputation
effects, financial market impacts, or lawsuits [17].

To address this issue, this thesis also develops a neural network with Federated Learning.
To initialize the network, it is trained to produce the same results as the cyber cost estima-
tor model, which is also developed as part of this thesis. The advantage of the Federated
Learning approach is that it allows sharing of conclusions while keeping anonymity (i.e.,
without revealing any information besides the trained model). Consequently, the model
will allow for improved cost estimation over time due to more data. Promising results in
using centralized trained ML models in other industries provide evidence that networks
can learn cost-estimating functions [33, 44, 143, 79]. Furthermore, related research shows
that FL is used successfully in other privacy-sensitive sectors to achieve similar perfor-
mance as centralized models while maintaining privacy [75]. Therefore, this thesis lays
the groundwork for an anonymous data sharing tool for financial cyber security data to
improve future models.



Chapter 4

The Real Cyber Value at Risk Model

This chapter proposes the novel model named Real Cyber Value at Risk (RCVaR) and
its methodology in detail. The complete RCVaR model consists of three parts: The cost
predictor, the risk estimation, and a Federated Learning (FL) solution. Since the risk
measure in the RCVaR is a quantile-based metric, which follows the logic of the Value at
Risk presented earlier, the term Real Cyber Value at Risk is sometimes referring only to
the risk output. Nevertheless, the whole model is considered to be the Real Cyber Value
at Risk. When using the model, both cost and risk estimation outputs underlie multiple
assumptions. These assumptions are briefly mentioned at the end of each subchapter, and
a more detailed discussion of them can be found in the evaluation section of this thesis.
An exhaustive list can also be found in Appendix B.

Figure 4.1: Overview of the RCVaR Development Process

This chapter is structured as shown in Figure 4.1. First, a light is shone on the data
sources used to compute the RCVaR. This topic includes an extensive discussion on how
the data is extracted from the reports. The following section then gives an in depth look
at the development of the cost estimator by deriving all sub-parts of the cost prediction.
Once the financial impact estimation is covered, the focus of this chapter shifts toward
risk prediction. There, the distribution of costs is derived statistically before presenting
the risk model with its assumptions in detail. Besides risk and cost estimation, this thesis
introduces a Federated Learning approach in Chapter 4.4 to address the issue of data
scarcity in cyber security economics. In the end, a web solution that incorporates all
models and makes them accessible to a broad audience is presented.

23
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4.1 Data Gathering

As the Congressional Research Service (CRS) already pointed out in their 2004 report
[17], a scarcity of data related to attacks and breaches exists. This has different reasons:
Firstly, companies have strong incentives not to report breaches. The incentives stem
from multiple fears. Most prevalent is the anxiety of reputation loss and increased costs
to raise capital. Companies usually do not want to expose themselves to liability lawsuits
or signalize that they are soft targets. Secondly, it is tough to assign a monetary value
to the damage of an attack. Particularly, Indirect and Opportunity costs are complicated
to measure. For example, it is hard to quantify the overall value lost due to costumers’
decision not to buy more services and goods because of the attack [18].

During this thesis, to the best of the author’s knowledge, there is no dataset consisting
of monetary costs of cyber attacks publicly available. However, sparse resources are
accessible in reports of major consulting firms such as Accenture [2, 3, 10], IBM [27],
Ponemon Institute [126, 127, 128] and Kaspersky [72]. Nevertheless, due to different
measurement units, survey years, and survey regions, it is impossible to effectively compare
and merge the cost-related data between reports. Moreover, these articles only state the
mean cost for their respective sample pool. As discussed in Section 3.4.2, the expected
cost alone is not helpful due to the connection between total cost and risk. The only report
which presents an array of monetary consequences of cyber attacks, from which risk can be
derived, is the Accenture report from 2017 [2]. As a consequence, the Accenture reports [2,
3] act as a primary data source. Compared to other reports researched in the scope of this
thesis, Accenture is the only consulting firm that included multiple types of cyber incidents
in its research. Furthermore, the report covers the Direct, Indirect, and Opportunity
economic losses of attacks. Moreover, they connect the costs to a time dimension, which
eases the interpretation of the cost values. In contrast, the IBM handout [27] demonstrates
the cost per breach but does not provide any information about their frequency. This
complicates cost predictions since even minor impacts can have cumulatively high costs
depending on how often they occur. Therefore, the Accenture reports [2, 3] are the primary
data sources, whereas the other consultant papers are secondary sources of information.

4.1.1 Primary Data Source

The only publicly and freely available dataset of costs of multiple attacks was found in the
Accenture report from 2017 [2]. Figure 4.2 shows how the anonymized data is presented
in the report. The figure shows the annualized costs in US-Dollar (USD) of 254 companies
surveyed, represented by dots.
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Figure 4.2: Company Individual Cost Presented in the Accenture 2017 Report [2]

To obtain the information in the graph, Accenture surveyed over 2100 individuals of 254
larger enterprises, which boils down to an average of 8.5 interviews per company. The
majority of the participating individuals (36%) were tasked with IT security or IT op-
erations in their company. During the interviews, the participants were asked to report
Direct, Indirect, and Opportunity costs for each incident response step over four consecu-
tive weeks. The incident steps included subcategories of the Consequence and Response
stages (cf. Section 2.1). These subcategories are Detection, Investigation of the incident,
Containment of the impact, Recovery, and Ex-post response. Besides these data-gathering
process, external consequences such as business disruption or revenue loss were addition-
ally calculated using shadow-costing methods. After the data was collected in the research
period of four weeks, the cost numbers were annualized [2] and converted to USD accord-
ing to the exchange rates provided by the Wall Street Journal on the 16. August 2017
[34]. The complete methodology is confidential and, therefore, not explicitly explained in
the study.

The sample of companies represents a diverse mix of 15 sectors. Most companies operate
in the financial (16%) and the industrial sector (12%) [2]. The granularity of the sectors
roughly corresponds to the 11 sectors of the S&P 500 [45]. Regarding the company
size, only large enterprises, with a minimum of 1’050 enterprise seats, were selected.
The number of enterprise seats corresponds to the number of employees with access to
internal IT systems. Regional-wise, only companies from specific western economies, such
as Germany, Australia, or the United States, were interviewed in the 2017 report [2].

It is crucial to outline that the study is not based on actual accounting information
but on the statements of multiple senior officials per company. These statements might
not accurately depict the reality, even though checks were implemented in the survey to
assess the correctness [2]. The study further does not cover preventive expenditures for
information security and company policy measures [2]. The study also does not consider
the number of stopped attacks for the attack expenditure calculation. Furthermore, the
cost estimations may suffer from non-response- or sampling bias. Additional bias could
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have been introduced by the non-disclosed shadow-costing method. While Accenture does
use statistical inference to calculate confidence intervals for the mean in their research,
they state that it is not advisable to use the results for statistical tests.

Assumptions

• Bias free dataset.

• The report from senior officials is a good representation of the reality.

• The currency exchange rates are not abnormal during conversion.

4.1.2 Data Extraction

Unfortunately, the data shown in Figure 4.2 of the Accenture report [2] cannot be easily
processed because it is presented in a graphical format [13]. To address this issue, multiple
approaches from computer vision [65, 115, 116] were explored in this work to identify the
actual cost numbers. All approaches work similarly by estimating the y-coordinates of the
dots as well as the top and bottom lines. Once all these coordinates are known, the actual
cost value can be calculated using Equation 4.1. For all approaches, the OpenCV library
[132] was used, which sets the origin per default in the top left corner. Consequently, the
y-coordinate of the bottom line is higher than the top line.

Cost = 90× Bottom line(y, )−Dot(y, )

Bottom line(y, )− Top line(y, )
(4.1)

When inspecting Figure 4.2, one can observe visually two colors: Orange and Black.
These characteristics are used in the first approach to identify the center coordinates of
the data points [65]. More concretely, a simple comparison of each pixel color to the
desired color orange (255, 153, 51) is conducted. This lookup results in a cluster of pixels
with the color orange. In the next step, the center coordinates are derived using a depth-
first search among the clusters of orange pixels. Unfortunately, this results in very few
data points since the orange color observed by humans can have multiple slightly different
Red, Green, and Blue (RGB) values. In total, the computer could observe roughly 2900
RGB combinations in Figure 4.2. Therefore, the acceptable range for the color orange
is expanded. Through trial and error, it is determined that the best detection results
are achieved by taking the 14 colors most similar to orange out of the array of unique
colors detected by the computer. The color lookup approach resulted in 252 recognized
dots, representing 99% of all company data points. However, upon visual inspection of
Figure 4.3a, it becomes clear that the method detected some points twice and many not
at all. Therefore, it was determined that searching for colors in the image to derive the
coordinates and, finally, the cost numbers is not a reliable approach.

As a second approach, the OpenCV’s Hugh Circle transform [115] is considered. This
algorithm uses a 3D accumulator to estimate the three parameters of a possible circle,
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namely the radius and the two center coordinates. Before applying the Hugh Circle trans-
form, an edge detection convolution is applied to the image to detect edge coordinates,
which are the foundation to fill values in the accumulator. The default algorithm used for
the Hugh Circle transform is the Canny Edge detector [114]. The detected edges (white)
in Figure 4.4b illustrate that edges are remarkably accurately detected. In addition to
the default edge detection algorithm, the Sobel algorithm [117] is applied to compare
the results. As one can see, comparing Figures 4.4b and 4.4a visually, the Canny Edge
detection algorithm returns thinner lines and, therefore, more accurate edges.

Original Data Points, Estimated Center of Dots

(a) Color-Dot-Detection

Original Data Points, Detected Data Points

(b) Dot-Detection With the Hugh Circle Trans-
form Algorithm in Combination With Canny-
Edge Detection.

Figure 4.3: Results of Dot-Detection Approaches Applied to Figure 4.2

When applying the Hugh Circle transform algorithm with the Canny Edge detection
mechanism, 85% of the 254 actual points are detected, as seen in Figure 4.3b, where the
green encircled dots mark the correctly located dots. Compared to the results in 4.3a,
where the blue dots are the estimated dots and the orange the actual ones, there are fewer
false positives.

(a) Detected Edges Using the Sobel Edge De-
tection Algorithm

(b) Detected Edges Using Canny Edge Detec-
tion Algorithm

Figure 4.4: Results of Edge Detection Algorithms Applied to Figure 4.2
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In the last approach, the graph is visually examined and the dots are selected manually
through a mouse click [116]. The program then remembers the mouse click coordinates
and calculates the costs with Equation 4.1 in the next step. With this approach, 250 dots
could be identified, which resembles 98% of all the data available. The visual inspection
of Figure 4.5 also reveals that there are no false positives and that the estimated points
capture the distribution well.

Original Data Points, Data Points’ Center Coordinate Determined by Mouse Click

Figure 4.5: Manual-Detection of Data Points Through Mouse Clicks

All of the above-described methods, the color-detection, circle-detection, and the manual-
detection, introduce some error to the actual truth. Since the development of the risk
metric requires a correct distribution but not an accurate estimation of every single data
point, the inaccuracy in the data is not critical. If all extraction methods have a similar
distribution with a certain confidence, the overall probability of choosing the wrong dis-
tribution in Section 4.3.1, based on the data provided, is small. Therefore, a Kolmogorov-
Smirnov 2-sample test [105] is performed to evaluate the parity of the data series extracted
through the three methods from Figure 4.2. When comparing all three distributions, no
null hypothesis can be rejected. This means that for none of the data distribution com-
parisons, one can reject the parity hypothesis. For instance, the data gathered by the
circle-detection and manual-detection methods is not significantly different with a con-
fidence level of 85%. Additionally, the hypothesis that the distributions between the
manual-detection and color-detection methods are the same cannot be rejected with a
high confidence level of 95%.

Assumptions

• The extracted data is representative of the distribution in Graphic
4.2.
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4.2 Cost Estimation

This section outlines the development process of the economic loss estimation model to
address the identified gap of customizable cost assessment models. Each component of
the model is explained individually before merging the building blocks together in the
Section 4.2.5. The initial section focuses on the process of scaling the cost based on the
monetary size of a company. Next, the scaling of both costs and valuation over time is
introduced. Finally, the design of the customization factors is shown, thus, allowing the
model to tailor the cost to an individual company.

4.2.1 Size Scaler

Based on the data extracted in Section 4.1.2, a firm’s considered average annualized costs
in 2017 were $ 11.7 million. The reason why the 2017 average is chosen over IBM’s
average cost per data breach for 2022 [27] is that Accenture covers all incidents, not only
data breaches. Furthermore, to give an accurate cost estimate based on IBM’s numbers,
one must to determine the frequency of data breaches to estimate costs per time period.
Therefore, out-of-the-box annualized costs from Accenture fit the role better and allow
companies to integrate expected costs into their yearly financial reporting.

The first challenge when estimating the average cost per company is how to scale the cost
to the company’s size. To achieve this, the estimator uses market capitalization or, for
unlisted companies, their equity valuation to scale the costs. Since the survey results are
anonymized, it is impossible to determine the study participants’ average valuation and
match them to the average cost. The only information available is that the companies
operate in 15 different sectors, which roughly correspond to the 11 sectors of the S&P
500. Furthermore, Accenture’s survey only included larger organizations with enterprise
seats (i.e., the number of direct connections to the enterprise systems) ranging from 1’050
to 259’000.

Since the S&P 500 is comprised of the 500 largest US-based businesses, its average market
capitalization is not a good approximation of the average valuation of an enterprise in the
survey. An alternative is the Russell 1000 [87], which includes the large stocks of the
S&P 500 but is more representative of the US economy due to an exposure of 93% to
the entire US equity market. It is further unlikely that tech giants (e.g., Apple, Amazon
or Microsoft) were part of the Accenture survey since those large companies often have
in-house consultants and their own cyber security experts. Furthermore, Accenture states
in its report that the largest enterprise in the survey had 259’000 enterprise seats. Due to
these restrictions, it can be assumed that a subset of the Russell 1000 should be utilized
to approximate the average market capitalization of the sample.

The subset should consist of a large spectrum of company sizes from different sectors. The
ideal match is the Russell Mid-Cap Index. It consists of large companies but ultra-large
businesses, that are part of the Russell Mega-Cap Index, are excluded. In other words,
enormous multinational companies, such as Apple or Amazon, are not part of the Index.
At the same time, the Mid-Cap Index also excludes listed Micro-Cap enterprises, which
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aligns with the minimum requirement imposed by Accenture. Furthermore, the Index
includes 800 companies from a wide variety of industry sectors, which covers all sectors
listed in the sample description. Due to all these reasons, the Russell Mid-Cap Index
presents an excellent fit to investigate the sample’s characteristics.

Figure 4.6 depicts the historical market capitalization of the Russel Mid-Cap Index ac-
cording to the Bloomberg database [11]. The total market capitalization at the end of
2017 was $ 7.7 trillion. Since the membership list of the Index is publicly available at [86],
the average market capitalization for the year 2017 can be calculated as approximately
$ 9.63 billion. This indicates that the average valuation of a listed enterprise in the US
economy, not including ultra-large and extremely small companies, was $ 9 billion in 2017.
From this information, it can be inferred that the average company in the survey sample
had a similar market capitalization. Although the study also included companies from
non-US economies, this conclusion remains valid since European companies in the study
have similar characteristics as their American counterparts.

Figure 4.6: Market Cap of the Russell Mid-Cap Index (RMC) Based on Data From [11]

The conversion ratio can then be computed based on the average market capitalization
for 2017 and the average annualized costs for cyber incidents. The conversion ratio or cost
valuation ratio (cv ratio), as shown in Equation 4.2, was developed in the scope of this
thesis. The idea is to use a firm’s 2017 valuation to estimate its expected costs for that
year. Using the company’s valuation or market capitalization enables a straightforward
calculation of costs without having to understand the specific cyber security cost behavior
of the company. To determine a company’s equity value, known methods from economics
can be used, such as stock market capitalization, peer group comparison, discounted
cashflow or liquidation value [71].

cost valuation ratio(cv ratio) =
total avg cost 2017

MarketCapRussellMidcapIndex

(4.2)



4.2. COST ESTIMATION 31

Assumptions

• The average market cap of the Russell Mid Cap Index approximates
the average market cap of the companies in the data samples.

4.2.2 Time Scaler

As introduced above, scaling the average costs to the size of a company is only valid if the
valuation is based on data from 2017. Additionally, the output only provides an estimate
of cost for 2017. Therefore, this section addresses the challenge of accurately scaling the
valuation and costs to the relevant year.

Numerous factors exist that influence an increase or decrease in annualized incident costs.
For instance, the frequency and type of attacks might vary over time. Also, new law
regulations might require additional spending in case of an incident. Another driver of
cost increase over the years is undoubtedly inflation. When products and goods become
more expensive, so become ransom, consultants, and protection solutions.

Figure 4.7 depicts the yearly inflation from 2010 to 2020 in the US on the y-axis. The
inflation data was obtained from the Bloomberg database [12]. To determine the inflation
rate, one must compute the increase of price of the Consumer Price Index (CPI). The
CPI is an Index that measures the current price for a basket of goods. The price change
of this basket over time reflects inflation [154]. On the x-axis, the average annualized
financial impact of cyber incidents per company can be observed. The data is based on
three Ponemon and three Accenture reports [126, 127, 128, 2, 3, 10]. Only these reports
are used, because they use the same measurement units and methodology for collecting
data, but not the same region. Including additional reports, such as those from IBM,
would significantly decrease the explanatory power of the regression.

Figure 4.7: The Influence of Inflation on Cost

Since Accenture shifted the focus of the annualized reports from cost to threats, the Ac-
centure 2019 report is the last cost of cyber crime study available. Therefore, the cost
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impact for 2020 needs to be computed based on the cyber resilience report of 2021 [10].
The report categorizes companies into four categories according to how the company uti-
lizes cyber security in terms of business strategy or resilience. The largest subgroup by
far, with 55% of survey-participating companies fall into the “Vulnerable” category. Com-
panies in that category have immature cyber security and protect the bare minimum of
their infrastructure. To determine the expected cost for the year 2020, under the assump-
tion that the affiliation of a company to a subgroup is unknown, one has to calculate the
weighted average of costs of all categories. The weights in this computation represent the
frequency of successful attacks of the respective subgroup. Even though the frequency is
given for each category, the expected cost is only provided for two of the four. Therefore,
the cost needs to be approximated with the expected cost of the two remaining subgroups.
In the end, the weighted average cost of the subgroup yields annualized costs per com-
pany of $ 13.8 million for 2020. Through interpolation, the remaining value for 2019 was
deduced.

It is essential to point out that the number representing 2020 is based on research pub-
lished in March 2020. Respectively before the full scale of the pandemic revealed itself.
Since cyber crime saw a strong surge in activity during the pandemic [10], the effective
expected cost for the year 2020 is considerably higher. However, this thesis considers
the circumstances during 2020 and 2021 as rare abnormalities. Therefore, the regression
result would be heavily skewed if later costs were included. Consequently, the adjusted
pandemic cyber activity numbers were purposefully left out during the construction of
time scaling variables to improve the predictability of the cost estimator model in reg-
ular times. To deal with cyber crime influencing black swan events, such as pandemics
or wars, one has to view the cost estimator together with the risk measure developed in
Section 4.3.2. More specifically, in terms of company individual black swan events, one
would have to look at the tail beyond the α quantile. Risk measures for these areas exist,
such as the expected shortfall. Nevertheless, it is tough to quantify them in the cyber
domain because since the broad adaption of the internet; there have been very few global
long-lasting crises. And even fewer that measurably impacted the financial cost of cyber
attacks. Hence the lack of data is highly prevalent at the tail of the distribution.

Based on the inflation numbers from Bloomberg [12] and the annualized per-company
average cost from Accenture and Ponemon, several regressions can be computed to deter-
mine relationships. Figure 4.7 shows the relationship between inflation and the economic
cost of attacks. It can be observed that there is a positive relationship between both time
series, meaning higher inflation also leads to higher costs. However, the result, with a
p-value of 34%, can also be stated as not statistically significant. Furthermore, even if
the relationship would show significance, its results must be consumed with caution due
to very few data points and the selection bias introduced by leaving out 2021 numbers.

As inferred from Figure 4.7, the correlation between inflation and cost could be better.
Therefore, the cost estimator model needs to scale cost and market capitalization indepen-
dently over time. The intention behind it is that the valuation will be scaled to the year
2017, where it can be converted to cost after multiplying with the cv ratio. Afterward,
the resulting costs are re-scaled to the desired year.
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company valuation2017 =
company valuation 2017+T

discountT
(4.3)

Since the discount model should work with simple multiplication (cf. Equation 4.3),
respectively, by extrapolating the discount factor, a regression against the cumulative
inflation is conducted. The beta of the regression in Figure 4.8 yields an average inflation
of 1.81% from 2010 to 2020. An inflation discount factor of 1.81% is reasonably close to
the real annualized inflation of 1.72%. The difference partly stems from the fact that a
linear model was applied to only 11 data points. Furthermore, the limited scope of the
analysis to the past 11 years means that the results cannot be generalized well beyond this
time period. If, for example, current valuations are discounted with an inflation rate of
1.81%, the cost output would be heavily skewed due to current inflation numbers, which
are close to double digits. Furthermore, it is indispensable to mention that this thesis does
not consider asset growth. Meaning the cost of a company for the year 2014 is most likely
lower than the output suggests if the enterprise experienced higher than inflation growth
due to business activity. Nevertheless, the current estimator gives a reasonably accurate
cost estimation for a company for the past few years. To increase the accuracy of the
scaling process, the model could use the exact inflation numbers and inflation predictions.
Furthermore, other discount values, such as the Weighted Average Cost of Capital could
be used. However, using such measures would add more complexity to the model and, in
the case of the exact inflation numbers, reduce generalizability over a considerable time
horizon.

Figure 4.8: Evolution of the Cumulative Inflation Over Time

Since inflation is determined to be the valuation discount factor, the cost increase rep-
resents the discount factor to scale the cost to the desired year. Similar to the inflation
discount factor, it should work by simply extrapolating the average cost increase by years
(cf. Equation 4.4). Consequently, the costs were computed as a percentage of the initial
cost in 2010. Meaning the cost of $ 6.5 million in 2010 is marked as 100%, whereas the
cost of $ 8.4 million in 2011 is represented in percentage of the 2010 cost (129%).

company cost2017+T = company cost 2017 × discountT (4.4)
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The result of running a regression on the cost percentages is depicted in Figure 4.9.
Similar to the regression where inflation is the dependent variable, the regression’s slope
represents the annualized increase. Hence it can be assumed that cyber cost rise on
average by 11.2% (not inflation-adjusted). There are two significant differences to the
inflation discount factor. First of all, the T in Equation 4.4 can be negative. A negative
T means a down-scaling of cost for years prior to 2017. The second difference is that
the cost data stems from various sources, which comes with challenges. The earliest data
regarding average annualized cyber incident data is available in [126]. In the scope of this
thesis, no data was found regarding cyber security costs on a company level before 2010.
Moreover, data before 2013 often relies on samples that consist of only few companies.
The smallest amount of 45 participating enterprises occurred in Ponemon’s first study in
2010 [126]. Another relevant detail is that the studies before 2013 only researched US-
based enterprises. This could explain the sharp drop in costs in 2013 since the study in
that year specifically included a few European companies. Nevertheless, the regression is
significant, with a p-value of 2%. Nevertheless, the significance must be viewed cautiously
due to few data points. Overall, the beta of the regression is 11.2%, which, as stated
before, reflects the yearly non inflation-adjusted cost increase. It can be expected that
the increase is even a bit higher since the drop in the year 2013 smooths out the overall
trend.

Figure 4.9: Evolution of Cumulative Cost Over Time

Assumptions

• The Costs of the “Vulnerable” category in the 2021 report [10] can be
reasonable approximated.

• Inflation is a reasonable discount factor for different assets across
various industries.

• Both regression approximate the annualized increase of cost, respec-
tively inflation, relatively well.
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4.2.3 Factor Selection

After applying the proposed scaling approaches, the result will resemble the expected cost
in a particular year. But as several studies from IBM [27], Kaspersky [72], and Accenture
[2, 3] demonstrate, costs deviate significantly from the overall average when more specific
business characteristics are considered. Exemplary characteristics, among others, include
the location or the industry. These company specifications lead to customized threat
and vulnerability profiles and, consequently, individual cyber costs per company. This
section defines the business characteristics from research (cf. Table 3.1), which are most
important for tailoring costs to a business and, thus, are used in this thesis.

The different business characteristics, also referred to as factors in this thesis, are chosen
based on data availability and relevance in other cyber security awareness assessment
tools. The first assessment tool, which is investigated in the scope of this research, is a
questionnaire developed by the Information Assurance for Small and Medium Enterprises
Consortium (IASME) in association with the UK National Cyber Security Center [67].
The questionnaire is tailored explicitly towards SMEs and should enable them to identify
vulnerabilities and how to act on them. In combination with the questionnaire, an official
government certificate can be attained, which should signal to customers that the company
places heavy emphasis on cyber security, according to the NCSC [104]. The second self-
assessment tool, which serves as an orientation in the factor selection, is provided by
the Cyber Security Osservatorio [26]. The Osservatorio is part of Italy’s largest public
research institution and receives funding from the European Commission and the Italian
government [25]. Its services are specifically tailored to inform SMEs on cyber security
topics [29]. Both self-assessment tools do not provide any cost estimations for cyber
attacks and are solely qualitative tools to elicit the vulnerability of Small and Middle-
Sized Enterprises.

Combining the data in reports and the requirements from both assessment tools leads to
the selection of factors in Table 4.1. Each factor has several Parameters. For instance,
a company can select between the USA, Germany, and many others within the category
of business residence. It is noteworthy that even though the factor selection is based
on related questionnaires, it goes far beyond the capabilities of both assessment reports.
This is also illustrated in detail in Table 4.1. Furthermore, the estimator developed in
this thesis covers multiple countries and a wider variety of security measures and more
parameters than both assessment tools, which have a limited parameter selection.

As illustrated in Table 4.1, the Country is the first factor. The Country in this context
refers to each country where the company has an office that has an operating computer.
Even though the Country is in neither self-assessment tool, it is an integral factor since
regulations, security pricing, and threat environments vary across regions. The same is
true for the industry in which a company is operating.

The third factor shines a light on the IT system connections of company suppliers. Multi-
ple reports [10, 3, 27] underline the importance of attacks on companies through supplier
networks. For example, according to IBM [27], 19% of all data breaches in 2022 occurred
due to infiltration over the supply chain. Therefore it is necessary to evaluate if the sup-
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plier can be trusted. Unfortunately, due to the lack of data, the estimating tool requires
the user to input whether he believes the supplier has trustworthy IT security or not.

As already established in Section 4.2.1, the size of a company plays a vital role in de-
termining a firm’s threat profile. Since the size of a company can be not only defined
by its valuation but also by the number of employees, the headcount of an organization
is a key input factor. To ease the use of the estimator tool, the parameters provided
in this section align with the Organisation for Economic Co-operation and Development
(OECD) classification of SMEs [118]. However, not only is the number of employees a
crucial input factor, but also what cyber awareness they bring to the table. This circum-
stance is reflected in the Training factor, which asks the user to specify if the workforce in
the company has received any cyber security training. For instance, training in detecting
spam mails.

The fifth factor pays tribute to the fact that most businesses in today’s digitized society
use a cloud solution to sell their products or operate on a daily basis. Different network
architectures in this context can lead to different vulnerabilities, which in consequence,
need to be reflected ultimately in the cost. Hence the cloud type must be considered when
determining the financial impact of cyber attacks.

Another major contributor to a company’s costs is how many employees access the com-
pany’s IT systems remotely. IBM discovered that the correlation between the number of
remote workers and the cost of attacks is significant [27]. In 2021, for instance, companies
with more than 80% of remote personnel experienced roughly 1.5 million higher costs
on average than companies with more than 80% of the workforce on-site. To assess this
factor, one needs to specify how much of a company’s workforce is located remotely, by
entering the exact percentage number. Internally, the program will assign the amount of
remote workers to one of the categories listed in Table 4.1.

The last four categories resemble the cyber security measures which can be taken to
secure an organization. These characteristics can be modified by investing in technology
or by purchasing a cyber insurance contract. As all reports researched in the scope of this
thesis declare, security measures and defense-enabling systems improve a company’s cyber
resilience and consequently reduce the expected cost. Hence, Multi-Factor Authentication,
Identity Access Management systems, Insurance, and other measures are major factors
to the estimator. The discussion regarding security measures often centers around which
defense measure gives the biggest bang for the smallest buck. In other words, which action
delivers the most effective defense for the lowest amount of money.

Table 4.1 summarizes all factors and their parameters used in the estimator tool of this
thesis. Furthermore, the last two columns indicate whether the factor is mentioned by
the respective self-assessment tool represented at the beginning of this chapter. Overall,
11 factors for customization were selected. Even though the valuation itself is a business
characteristic needed to shape the cost to an individual company, it is omitted in the table
due to its extensive discussion in Section 4.2.1.
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Cost Factor Parameters IASME Osservatorio

Country
USA, UK, Germany, France,
Italy, Canada, Spain, Scandi-
navia, Turkey

No No

Industry

Banking, Utilities, Aerospace and
Defence, Software, Health, US
Federal, Consumer Goods, Re-
tail, Life Sciences, Communica-
tions and Media, Travel, Edu-
cation, Automative, Insurance,
High Tech, Capital Markets, En-
ergy, Public Sector, Pharmaceuti-
cals, Industrial

Yes Yes

Supplier Supplier Safe, Supplier Not Safe No Yes

Number of Employers Micro, Small, Medium, Large Yes Yes

Cloud Model Public, Private, Hybrid Yes No

Employer Training
Training Received, No Training
Received

Yes Yes

Percentage of Remote
Employers

0-20%, 21-40%, 41-60%, 61-80%,
81-100%

Yes Yes

Cyber Insurance Insurance, No Insurance No No

Multi-factor
Authentication

Multi-factor Auth., No Multi-
factor Auth.

Yes Yes

Identity Access
Management

Identity Access, No Identity Ac-
cess

Yes Yes

Deployed Security
Measures

Automated Checks & ML and AI,
Cyber Analytics and Behavior
Analytics, Encryption Technolo-
gies, Risk management, Sufficient
Security Staff, Incident response
plan testing, Security intelligence
systems, Advanced identity and
access, Advanced Perimeter Con-
trols, Data Loss prevention mea-
sures

Yes Yes

Table 4.1: Cost-Influencing Factors and Their Parameters
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4.2.4 Factor Scaler

This section explains the mathematical foundation of calculating the factors in detail.
Before the calculation can be performed, the data must be preprocessed. This step comes
with its own set of assumptions that also need to be discussed. Next, the data sources for
every factor are presented before displaying the final parameters ratios graphically.

Preprocessing of the Data

After defining the significant factors for cost customization in Section 4.2.3, the factors
need to be calculated from the available data. Table 4.2 illustrates from which sources
the data was taken to compute the factors. It becomes clear that not all factors are
available in every report. For instance, the influence of remote workers on the cost is
described for two years in the IBM report [27] but not in the Accenture report [2, 3]. On
the other hand, the number of employees is only stated for the year 2017 in the Accenture
report [2]. Further challenges arise from the fact that even if the same factor is present in
two reports, the parameters might not coincide. This issue is best demonstrated on the
country factor, where the parameters Canada and Italy are present in the data for 2018
but not in 2017 [2, 3].

Further adjustments due to unclean data were necessary. The following paragraph de-
scribes them in detail:

• The cost estimator is tailored towards European and North American SMEs due
to sparse data available for businesses outside these regions. The limited informa-
tion available for Asian, Middle Easter, or South American companies is therefore
purposefully omitted to achieve higher accuracy.

• Data for the parameter Health in the industry factor for the years 2021 and 2022
is also omitted intentionally. This corresponds to the argumentation presented in
Section 4.2.2. More specifically, this thesis views the pandemic as a black swan
event, which occurs relatively rarely. If the attack cost of the health industry, which
spiked during these two years, is included in the factor calculation, the ultimate
factor would be highly skewed. The inclusion would be especially grave since the
data for 2021 and 2022 would make up 50% of all data related to the health industry.

• The last adaption of data needed to compute the factors is the unification of param-
eter names. For instance, the industry named “technology” in the IBM review [27]
has a matching equivalent in the Accenture reports [2, 3] called “high tech”. To ef-
fectively use both industries as one parameter, the names were adjusted accordingly
where necessary. In the case of the “technology” industry, this meant renaming it
to “high tech”.
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Cost Factor Years Source
Country 2017, 2018, 2021, 2022 [2, 3, 27]
Industry 2017, 2018, 2021, 2022 [2, 3, 27]
Supplier 2022 [27]
Number of Employees 2017 [2]
Cloud Model 2021 [27]
Employer Training 2022 [27]
Percentage of Remote Employees 2021, 2022 [27]
Cyber Insurance 2022 [27]
Multi-factor Authentication 2022 [27]
Identity Access Management 2022 [27]
Deployed Security Measures 2017, 2018, 2022 [2, 3, 27]

Table 4.2: Data Sources of Factors and When They Are Available

Computation of Factors

Once the data is cleaned according to Section 4.2.4, the issue of different time horizons
and measurement units remains. To resolve this issue, the relative cost of companies with
a certain business characteristic compared to the overall average for n reports is computed
using Equation 4.5.

parameter ratio =
1

n

n∑
i=1

cost parameteri − avg cost factori
avg cost reporti

(4.5)

The Equation 4.5 cancels the respective measurement unit due to the fraction. This cal-
culation is demonstrated with the concrete example of the Banking parameter. In the
year 2017, the expected incident cost for companies in the banking sector was measured
to be $ 18.28 million (cost paramter) [2]. The average across all k industry sectors (pa-
rameters) is calculated with Equation 4.6. Resulting in a sample average of $ 10.348
million (avg cost factor) if companies were equally distributed across the different in-
dustry buckets. As one can imagine, the actual average of the sample deviates from the
avg cost factor due to a non-uniform distribution across categories. However, the sample
average is luckily stated by each report. For the year 2017, the overall expected cost for
the sample is $ 11.7 million (avg cost report). Then, with the help of Equation 4.5, the
deviation of the banking sector’s average company for the year 2017 can be calculated.
The resulting ratio is 67.79%, which is also visible in Figure 4.10b. Expressed in other
words: A company in the banking sector, on average, faces costs that are roughly 67%
higher than the overall cost signalized in the report for the respective year. This param-
eter ratio is then calculated for each year where data for the parameter is available. For
the banking sector, this analysis shows that additional costs were incurred in the following
amounts: 67% in 2017, 45% in 2018, 37% in 2021, and 42% in 2022 (cf. Figure 4.10b).
To ultimately obtain a single ratio per parameter, the average of all these numbers across
the n reports in which data for that parameter is available is calculated. In the case of
the banking category, the rounded average would be 48%. This is the final result of the
Equation 4.5, which is further used in Equation 4.7 to tailor costs toward a company.
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As stated in the previous example, the report provides two of the three inputs for Equation
4.5. The one parameter that needs to be computed before inserting it into the Equation
4.5 is the avg cost factor. This variable represents the expected value of costs if the
industry is unknown. It deviates slightly from the mean sample cost stated in the report
since not all industries are represented equally in the data set. The average cost over the
factors (avg cost factor) is used because the deviation from the average industry, rather
than the deviation from an average company, more accurately reflects the additional costs
associated with a company’s sector affiliation. To compute the mean cost per factor, one
calculates the average over all k parameters within the respective factor. This computation
is executed according to Equation 4.6.

avg cost factor =
1

k

k∑
i=1

cost parametersi (4.6)

Selected parameters for the Country and Industry factors can be viewed in Figure 4.10a
and 4.10b, respectively. The ratios depicted there reveal only minor fluctuations over the
years. In other words, the parameter ratios occur to be relatively stable. This situation can
be observed in Figure 4.10a, where companies located in the US generally have expected
financial costs of above 86% while France remains negative the whole time. The ranking
among these three countries further stays the same for the duration of the data. A similar
conclusion can be drawn from Figure 4.10b. The ranking among the four industries stays
the same over time, except for the travel industry in 2021. Remarkably, even the tiny
distance between Communications and Media and Consumer Goods is persistent over
time. This observation is even more astonishing, considering that the parameters were
extracted from different reports [2, 3, 27] with different samples, measurement units, and
regions. This realization supports the hypothesis that the relative additional costs are
persistent. Hence, taking the average of ratios over different years is a good approximation.
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(a) Parameter Ratios of USA, France, and Germany

(b) Parameter Ratios of Banking, Communications and Media, Travel, and Consumer Goods

Figure 4.10: Parameter Ratios for Country and Industry Factors

After computing the parameter ratios, one can observe which characteristics influence
the cost the most. Figure 4.11 shows each factor’s maximum range in the positive and
negative direction. Additionally, the parameter responsible for the ratio is displayed
next to the bar. As one can observe in the bar chart, the business location can have
a substantial impact. For instance, US-American companies have double the cost of an
average company. The second highest influential factor is the organization’s size. The
more employees work in a company, the higher the cost due to cyber incidents. Regarding
the organization size, the highest impact has to be expected in SMEs with more than 250
employees. Another interesting observation from Figure 4.11 is that the most effective
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security action is the introduction of a Security Intelligence system [144], since it lowers
cost by 20% on average. However, business characteristics that define a company’s core,
such as employee amount, location, or industry have a far more significant impact on costs
than security systems. When looking at the graph, the most efficient action to reduce the
cost with a minor investment might be reducing the number of remote workers. Providing
an on-site workplace can reduce the financial impact by roughly 14%. This might be due
to many reasons, such as fewer connections over insecure Wireless Local Area Networks
(WLAN) or a more limited use of personal devices. Especially Bring Your Own Device
(BYOD) policies which are strongly connected to remote work, can have a detrimental
effect on the vulnerability of a business [72].

Figure 4.11: Maximum and Minimum Impact Parameters per Factor

Compared to Figure 4.11, Illustration 4.12 paints a more granular image. It can be
observed that the Country factor consists of a few countries with very high costs, whereas
the majority of business locations have a negative influence. This realization suggests
that some countries suffer more from attacks than others. This could be due to a higher
frequency of attacks or simply because of a more costly resolve. In the case of the US, the
relatively higher cost compared to other countries could stem from an increased amount
of targeted attacks of state-side actors. This hypothesis is further supported by data from
the American think tank called Council on Foreign Relations, which blames US rivals
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such as China, Russia, Iran, and North Korea for 77% of all globally state-side sponsored
attacks [28]. Another verdict from Figure 4.12 is that there is an indication of normally
distributed additional cost in the Industry factor. Similar conclusions can be drawn from
the Organization Size factor.

Figure 4.12: Distributions Within Factors

As mentioned above, the industry reports only state the relationship of a single business
characteristic to the average cost of all firms with this characteristic. This data structur-
ing prevents an in depth investigation into correlation effects among factors. There are
two types of correlation effects that may skew the results of the model. First, two business
characteristics might often appear together, but only one substantially influences costs.
For example, it could be that a majority of banking firms are located in the US. More-
over, since the parameter Banking increases cost, the average of a US-based company
is also increased even though the location US might be negligible. Secondly, business
characteristics can have different effects depending on whether they appear individually
or in combination with each other. Expressed alternatively, if the parameters are not
independent, their joint influence cannot be expressed by multiplication of factors. For
instance, the parameters Large and Industrial increase costs when appearing individually.
However, in combination, the increase might be less severe. Both correlation-introduced
errors are very unlikely to heavily skew the data due to a well-diversified dataset and
a factor selection based on reasoning and related work instead of quantitative reports.
Nevertheless, the correlation effects should be kept in mind while analyzing the output of
the RCVaR. Another assumption to remember is that the parameter ratios change over
time. Figure 4.10 highlights that the changes over time are minor; however, they exist
and therefore introduce an error to the model.
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Assumptions

• Cross-Correlation between Factors is assumed to be zero.

• Parameter ratios are constant over time.

4.2.5 Complete Model

This section merges all the building blocks discussed in the previous chapters to construct
the final estimator model. The economic impact estimation of a cyber attack for a com-
pany can be determined with Equation 4.7. The first step in this process is to determine
the valuation of the company for which the costs are being estimated. The valuation
should resemble the equity value of a company for the current year. Then, the valuation
is discounted with the respective discount factor described in Section 4.2.2, where T1 rep-
resents the number of years that have passed since 2017. The outcome of this operation
is the valuation of a company for the year 2017. This interim result is then converted
by the cv ratio to costs (cf. Section 4.2.1). In the next step, the costs are scaled to the
year for which the estimation is required. For instance, if an approximation for 2025 is
required, the discount cost is multiplied by itself eight times. In the end the estimation
is customized by computing the product of parameter ratios of all factors for which an
input was provided. If no specification for a factor was entered upon execution of the
estimator, the ratio is set to zero, which results in a multiplication of value one.

company costyear =
valuation 2017+T1

discountT1
valuation

×cv ratio×discountT2−2017
cost ×

11∏
i=1

(1+param ratioi)

(4.7)

Both discount factors in Equation 4.7 can be retrieved from Table 4.3. The numbers in
the table resemble the numbers presented in Section 4.2.2. More specifically, the cost
discount factor of 11% was determined by the beta of the regression in Figure 4.9. The
same is true for the valuation discount, which was identified by running the regression
visible in Figure 4.8. The resulting beta of 1.8% is then defined as the discount factor for
the market capitalization input.

Discount Factor Slope Sources
Cost Discount 1 + 0.110 [2, 3, 10, 126, 127, 128]
Valuation Discount 1 + 0.018 [12]

Table 4.3: RCVaR Discount Factors for Time and Size Scaling
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4.3 Risk Measure

As discussed in Section 3.4.2, more than the expected value is needed for developing a
plan of action during the cyber security management process. Therefore, this section
presents the risk part of the RCVaR model. In the first step, the Generalized Inversion
Gaussian distribution is determined to be the best fit of the spread for the sample. The
development of a representative distribution underlies some strong assumptions, which
are further discussed in detail in the following sub-chapters, before finally displaying the
CVaR risk measure of the RCVaR model.

4.3.1 Distribution of Cost

The data extraction, described in Section 4.1.2, results in a data series of costs in US-
Dollar. These costs stem from different large companies operating in 15 different sectors.
In Figure 4.13, the distribution of extracted costs is displayed, with the y-axis representing
the number of occurrences in the sample and the x-axis indicating the cost value in USD.
It becomes clear that the distribution is heavily skewed to the left side, with a long tail
on the right side. The heavy tail in Figure 4.13 is caused by a few companies with very
high annualized costs. These findings are consistent with the 2020 IBM report [27], which
suggests that“mega breaches” - incidents with exceptionally high costs - are relatively rare
events. Of the 550 companies in the IBM sample, only 2.3% experienced these significant
events, roughly corresponding to 2.7% of companies that experience extreme values (above
40 Million) in the Accenture sample (cf. Figure 4.13) [2]. Based on these findings,
one cannot state any globally applicable relationship or characteristics. Nonetheless, the
similarity of these findings suggests that despite differences in years, methodologies, and
companies, the distribution of extracted costs in the sample is representative of the actual
distribution of costs.

Figure 4.13: Cost Density Distribution of the Accenture Sample [2]
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Further reports, such as the survey paper from Kaspersky [72], support the hypothesis of a
heavily skewed distribution. The Kaspersky report states that a non-insignificant part of
the costs can be attributed to professional services required after a breach. These services
include external cyber security consultants, specialized lawyers, or PR consultants. The
report indicates that consultants are required for 87% of incidents and, on average, make
up 26% of the overall financial impact. Upon investigation of this sizeable cost contributor,
it becomes clear that it approximates a similar distribution as Figure 4.13.

These empirical indicators can further be supported by theoretical reasoning: Most cyber
criminals do not particularly choose a specific target [141]. Instead, the victim’s reaction
to bait or the presence of a vulnerability often attracts the attention of a cyber criminal.
Exemplary of this circumstance are Phishing attacks. Phishing is a social engineering
attack in which the attacker contacts the victim under a fake identity to infiltrate a
network or to deceive the victim into revealing sensitive information [56]. According to
the IBM 2022 cost report [27], Phishing is the most expensive attack vector and the second
most frequent one. An attacker aiming to maximize profit will likely not target one specific
email account. Instead, he will send the Phishing mail to as many email addresses as
possible. The majority of these emails will be caught by spam filters, or the attack will be
detected in an early stage. As IBM points out, the earlier an attack is detected, the fewer
financial consequences the company will suffer. Following this argument, hypothetically
only a tiny fraction of the sent Phishing emails will result in a successful attack and
therefore in financial gain for the attacker. If one plotted the emails sent on the y-axis
and the monetary gain of the criminal per email on the x-axis, the distribution would
look very similar to Figure 4.13. Since the criminals’ gains are the victims’ cost, the
distribution must be mirrored to get the firm’s cyber cost. The mirroring is achieved
in Figure 4.2 by changing the x-axis label from gains to cost. Finally, one arrives at
the cost-per-incident distribution displayed in Figure 4.13. If all other attack vectors are
subject to the same distribution, the overall distribution is a linear transformation of the
previously established Phishing cost distribution.

In the next step, a goodness-of-fit test is conducted to determine which distribution fits
best the data sample from the report. The test is necessary to determine the contin-
uous function from which the α quantile can be computed. The Kolmogorov-Smirnov
1-sample test is used to perform the goodness-of-fit test. The KS goodness-of-fit test
works as follows: First, the data is sorted by increasing order. In the next step, the
Empirical Cumulative Distribution Function (ECDF) is computed and then compared
to the Cumulative Distribution Function (CDF) of the target distribution. Finally, the
vertical distance of each data point to the reference CDF is calculated. The best-fitting
distribution is the one with the lowest single maximum distance [98].

Before applying the test to the extracted data sample, it is necessary to discuss the
assumptions of the KS goodness-of-fit test:

• Continuous Distributions: The test is only applicable to non-discrete data. If
this requirement is disregarded, the p-values are not exact, meaning the confidence
threshold is most likely to be lower. The fewer data points are in the sample, the
more severe this effect is. Since we search for extreme p-values in a sizeable sample,
this assumption is relaxed. Furthermore, the KS test can be extended to categorical
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discrete ordered data as stated on the NIST website [106]. Since the data could
be ordered into buckets, this requirement could be full-filled. However, the appli-
cation of the extended discrete KS test goes beyond the scope of this thesis. To
conclude, due to the sample size and the expectation of very high p-values we relax
the continuous assumption.

• Sensitive at the Center: The Kolmogorov-Smirnov test is more sensitive at the
center of the ECDF than at the tails. This circumstance is not a severe issue for the
extracted sample because more data is in the center, which increases confidence in
the distribution. Sensitivity at the tails could be more challenging because of very
few indications of the actual distribution shape in that specific region.

• Fully specified Distribution: When a distribution’s parameters, such as mean and
standard deviation, are determined from the data sample itself, it could lead to
biased p-values. This means that a sample would not be rejected due to a high
enough p-value, even though it should have been [146]. Similar limitations apply to
the Anderson-Darling test, an alternative to KS [106]. For testing the hypothesis of
normal distribution the Lilliefors test, which allows estimations of parameters from
the sample, is applicable [146]. Unfortunately, testing in this thesis’s scope requires
a test which is applicable to multiple distributions. Since hypothesis testing aims to
determine the distribution which is most unlikely to be rejected by the true sample,
the assumption can be relaxed. The expected p-values should be well above the
significant 5% threshold; therefore, a more conservative Kolmogorov-Smirnov shall
not affect the results. Furthermore, every graph is visually assessed, to ensure the
best possible fit (cf. Figure 4.14). Nevertheless, it is vital to remember while reading
that the p-values in this thesis are approximations and should be considered as such.

After considering the limitations of the KS 1-sample test, the test was conducted using the
Python library scipy.stats [151], as shown in Listing 4.1. In the first step, the code iterates
over all 101 continuous distributions available in the scipy package and fits the distribution
parameters to the data sample (cf. 3rd KS assumption). After storing the parameters
in a dictionary, the Kolmogorov-Smirnov test is performed. For each test, the maximum
distance and the p-value are returned. Finally, the distribution with the lowest likelihood
of rejection, based on the p-value, is selected from the dictionary. The results can be
observed graphically in Figure 4.14. Besides displaying the distributions with the highest
p-values, the figure additionally shows the adjusted normal distribution. Figure 4.14 shows
that all four best-fitting distributions are an appropriate continuous representation of the
discrete data sample. The only difference is whether the density at the origin is zero or
not. If the example regarding Phishing emails from earlier is revisited, the argumentation
can be made that even when the spam filter detects the mail, costs occur. These costs
can be categorized into Detection, Investigation and Escalation, or Ex-post Response cost
[2]. For instance, costs occur during the activities and deployment of technologies for
early detection. Moreover, a spam email might trigger an investigation if it is a part of
a large-scale attack and if other employees have received identical emails. And last but
not least, the company will draw conclusions on how to protect against spam emails in
the future. The analysis and implementation of these post-attack responses are spending
points that should not be neglected. To summarize, there is a theoretical argument that
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zero costs cannot occur hence the density is zero at the origin. Consequently, the Pareto
distribution is deemed a poor match. A lower p-value of 46.9%, compared to bell curve
distributions, supports this conclusion.

1 for dist_name in dist_names:

2

3 # get the distribution of the stats module in scipy

4 dist = getattr(stats , dist_name)

5

6 # fits the distribution to the sample

7 try:

8 param = dist.fit(data)

9 except:

10 continue

11

12 # store the parameters in the summary dictionary (params)

13 params[dist_name] = param

14

15 # Applying the Kolmogorov -Smirnov test

16 D, p = stats.kstest(data , dist_name , args=param)

17 # The letter "D" stands for maximum vertical "distance"

18 # p stands for the p-value

19

20 print("p value for " + dist_name + " = " + str(p))

21

22 # select the best fitted distribution (with the highest p-value

23 best_dist_name , best_p = (max(dist_results , key=lambda item: item

[1]))

24

25 print("Best fitting distribution: " + str(best_dist_name))

26 print("Best p value: " + str(best_p))

Listing 4.1: KS 1-Sample Test in Python

Another finding of the KS 1-sample test that can be discovered in Figure 4.14 and Table
4.4 is that the normal distribution is not a good continuous representation of the data
sample. Even after adjusting for multiple testing with the Bonferroni method, which
reduces the 5% threshold to 4.95e−4, the normal distribution as a hypothesis can still
be rejected. The multiple testing adjustment is necessary since, with every iteration in
Listing 4.1, the chance of significance due to luck increases [90]. The graph in Figure
4.14 further supports this rejection since negative costs due to cyber attacks, which would
represent gains for the company, are unlikely to occur.

The test concludes that the Generalized Inversion Gaussian (Geninvgauss) distribution
is most likely not to be rejected. Important to point out is that the two statements:
“distribution which is most likely not to be rejected” and “most probable distribution” are
not equal. Therefore, it is not possible to determine “the one” solution. This circumstance
can also be observed in Figure 4.14, where only minor differences between the distribution
with the highest p-value and the subsequent ones are visible. Nevertheless, in the scope of
this thesis, the Generalized Inversion Gaussian is chosen as the best fit due to the highest
p-value.
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Figure 4.14: Distributions Fit to Sample

Distribution P-Value
Geninvgauss 0.98921
Exponnorm 0.96195
Norm 4.89e−6
Recipinvgauss 0.97147
Pareto 0.46933

Table 4.4: P-Values of Distributions

Assumptions

• The assumptions of the Kolmogorov-Smirnov test can be relaxed.

4.3.2 Discussion on RCVaR Application

Before applying the RCVaR, the assumptions regarding the risk distribution must be
questioned to avoid wrong conclusions. As described in Section 4.3.1, the distribution of
costs is derived from the loss of multiple companies. Meaning the data does not represent a
time series of a single company. Instead, the distribution is determined by a data snapshot
of multiple businesses with different characteristics, which is problematic when applying
the distribution to a single company to evaluate its risk. In other words, the distribution
of costs of a single company does not necessarily converge with the distribution of costs
of multiple companies. Therefore the assumption is made that risk does not vary over
different industries, countries, and other characteristics. Consequently, this allows viewing
all data points as costs from the same company. Subsequently, the model can make
statements on a single company’s Value at Risk.

The assumption regarding risk similarities among different business characteristics is
rather strict. Nevertheless, one could argue that the companies in the sample are some-
what similar to each other other due to the selection criteria used by Accenture [2].
The sample only includes companies from certain sizes and industries, and the business
processes of large companies tend to have many similarities because of regulatory require-
ments, market conditions, and best practices recommended by consulting firms. This
hypothesis is supported by empirical data from an IBM study [4], which found that 39%
of cross-industry processes have commonalities. This number is even higher within the
industries themselves. Furthermore, the study looked at the degree of similarities and dis-
covered that 20% of processes have more than 50% similarity according to their scoring.
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This result indicates that, although the assumption of equivalency is a simplification, the
distribution should still yield accurate risk predictions to conduct a risk-reward analysis.
In other words, the outcome of the trade off between the estimated costs from Section 4.2
and the risk from the distribution should have a neglectable error rate.

Another challenge that arises due to the unavailability of data is that the distribution
change over time is impossible to elicit. If more data were available, research into sea-
sonality and long-term effects could be conducted. In the scope of this thesis, only one
study from Stanford [78] was identified that investigates the evolution. It shows that
enterprises manage to eliminate the significant tail risks over time. Hence the expected
average cost also decreases. Calculating the cyber risk and expected cost with a heavy
tail distribution, as seen in Figure 4.13, leads most likely to higher cost estimates than
what should be expected in the future. The further in the future the prediction lies, the
more negatively skewed the risk. Therefore, the risk as well as the expected cost of the
model can be viewed as conservative estimations. Due to the results from Stanford [78],
it becomes clear that the distribution does not become worse over time. It is therefore
allowed to assume constant variance of the determined risk distribution over time since it
most likely leads to over-estimation of the risk rather than under-estimation.

The last assumption which needs to be discussed in the context of the probability density
distribution of costs is the effect of company size. The final model aims to estimate risk
and cost for Small and Middle-Sized Enterprises. Since SMEs are not represented in the
extracted data sample due to the enterprise seat restriction, one has to assume that the
exact cost distribution also applies to smaller firms. This assumption is supported by the
Accenture report, which suggests a linear relationship between costs and the number of
employees. A study by the university of St. Gallen [36] from March 2022 supports the
heavy influence of business size on cost and risk numbers. However, in their work, the
authors contradict the findings from Accenture [2] in saying that the relationship might
not be linear. They found higher per-data breach costs for smaller incidents. Under the
assumption that smaller incidents are mostly affiliated with SMEs, they hypothesize that
SMEs might have higher relative costs than larger corporations. Similarly to Accenture
[2], the conclusion of this study [36] is based on a limited number of observations (324)
and is restricted to US companies (unlike the Accenture report). As the Country is
an essential factor, as shown in Figure 4.12, and the relationship between factors has
not been investigated, it is necessary to exercise caution when considering this general
statement. Overall, no empirically significant statements regarding the relative higher
costs in smaller-sized companies are formulated in the study. Therefore, the constraint of
different cost behavior across the organization size factor is relaxed. Meaning the same
behavior as in the sample is assumed for SMEs. Nevertheless, it is worth noting that
scaling also introduces an error that may result in an underestimation of costs for smaller
firms, according to the university of St. Gallen [36].

After being aware of the assumptions that go into the risk distribution computation, one
can apply the model. In the first step, the expected costs are predicted with Equation
4.7 in Section 4.2.5. In the next step, the continuous distribution of the Generalized In-
verse Gaussian function is created with the help of the scipy.stats library in Python [151].
Following these steps, the Percentage Probability Function (PPF) has to be computed.
The PPF, which returns a discrete value for a given probability [107], defined by four
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parameters is described in [134]. Besides the scale and the location, the input parameters
are the same as the ones derived from the distribution of the sample data. The excep-
tion regarding scale and loc stems from the fact that scaling of the distribution requires
modification of these two parameters, as stated by the library [150]. To derive the new
location the original variable is scaled proportionally to the size of the expected value.
Meaning the distribution is shifted on the x-axis until the correct position is found. Next,
the scale, which resembles the spread is adapted similarly. Following these instructions
will result in the same distribution, which is just linearly scaled to the size of the expected
value. Ultimately, setting the variance, and with it the risk, constant.

Figure 4.15: RCVaR of an Average Company in 2019 With 95% Confidence

The result of the scaling can be viewed in Figure 4.15. It shows the distribution of costs
of a company with a valuation $ 1’000’000 for the year 2019. Based on this distribution,
the discrete value to which the realized costs are less or equal, with a certain probability
(95%), can be calculated [107]. This discrete value can be found at the 95th quantile in this
specific example. To reiterate, the green area under the curve in Figure 4.15 marks the
range of costs up to the 95th quantile. While the x-axis of the blue area shows costs that
occur with a probability of 5% or less. In summary, the expected costs are determined to
be roughly $ 8’000 with a Real Cyber Value at Risk of $ 23’448. This number can also be
observed in the graphic. Additionally, it is noteworthy that the mean of the distribution
and the expected value, which resembles the average, do not match. This is because the
continuous PPF is only an approximation fit of the sample. And even though it is the best
possible fit, its mean cannot match the expected value since that variable is based on exact
numbers from the data. Overall, based on the expected value and the risk represented
by the RCVaR, a business can start the cyber risk management discussion and determine
the best-suited risk-cost optimum for the individual company.
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Assumptions

• Companies in the sample are similar.

• Distribution is the same over time and factors.

• Costs of SME have the same distribution.

4.4 Model Development

Throughout this thesis, the issue of data scarcity has come up on multiple occasions.
This dissertation addresses this issue by proposing a Federated Learning (FL) approach.
Federated Learning allows training models in a decentralized manner, meaning the data
stays on the user’s local device, and only the model weights are shared with a central entity.
This procedure allows all clients, in this case, companies, to profit from the experiences
of others while keeping the exposure to cyber attacks private. In the first step, the
model is initialized by learning the proposed function in Section 4.2, building a foundation
for further improvements through the involvement of companies’ participation in the FL
process. However, a synthetic dataset must be created before the neural network can learn
the cost prediction Equation 4.7. Therefore, Section 4.4.1 describes the development of
the semi-synthetic data in detail. In the next and final step, a neural network architecture
is proposed and trained using a FL pipeline.

4.4.1 Data Generation

A synthetic dataset is an artificially created dataset that incorporates real-world charac-
teristics while keeping data anonymity. If the synthetic data closely resembles the actual
observations, no performance loss should be observed when training the model on the
artificial data [60]. In the case of the Real Cyber Value at Risk, no real observations
are provided by the reports [27, 2, 3, 10]. For example, no report presents an actual
company with its business characteristics and associated costs. Instead, only the costs
of anonymous organizations are depicted in graphical form. After the data extraction
(cf. Section 4.1.2), relations between a single characteristic and costs can be evaluated
(cf. Section 4.2.4). Nevertheless, the connection of detailed real-world entities to costs is
still unfathomable. Therefore, this thesis generates a dataset that adds several business
characteristics to a theoretical firm and then determines that firm’s cost based on the
known cost patterns. This approach assumes that cross-correlation effects among factors
can be disregarded. In this case, a cross-correlation example would be if a large percent-
age of financial companies were situated in the US, and their expected cost was higher
not due to the industry but the country affiliation. As mentioned before, the publicly
available data only states the relationship of one business characteristic to costs, which
prevents research into cross-correlation effects. Nevertheless, the observed cost patterns
in the consultant reports allow a rough assessment of where the costs lie. Consequently,
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the generated dataset is marked as semi-synthetic since it consists of hypothetical firms
but reflects real-world cost patterns.

Listing 4.2 shows a simplified version of the code responsible for generating data. As one
can observe, artificial companies are generated from 2012 till 2022. Within each year-
loop, the capital associated with an observation has to be determined. This is achieved
by selecting a random value of the normal distribution around the mean of the Venture
Capital (VC) valuation for that specific year. VC is a form of private equity which aims
to find startups or small companies with potential. Upon finding, a Venture Capital
fund assesses the value of the enterprise before seeking participation in the company
in exchange for money. The companies’ Venture Capitalists invest in can further be
divided into early and late-stage companies. Early-stage companies can be described
as companies with a functioning business model and a usable product. They further
might already generate revenue [121]. A study by Deloitte [32] in 2020 further elaborates
that the average employee amount of VC firms is around 14, which corresponds to the
organization size of SMEs. Due to all these reasons, an early-stage Venture Capital firm
is a good representation of a SME. This similarity in characteristics is essential since there
is more data available regarding the market capitalization of Venture Capital firms than
SMEs. Therefore, in the scope of this thesis, the market capitalization of VC companies
is assumed to be a good approximation of the average SME equity value. Report data
[123, 124] of Pitchbook, a large financial data supplier company [125], provides quarterly
equity value averages of early-stage Venture Capital firms for 2012 to 2022. Then, as stated
at the beginning of this paragraph, a value is randomly chosen from a normal distribution
around the mean for the respective year. The select random capital() function represents
this process in the code.

Once the year and the capital are determined, the program code in Listing 4.2 elicits the
single factors in line 27. From all parameters available for a particular factor (cf. column
parameters in Table 4.1), one is chosen arbitrarily. It is noteworthy that the term None
was added to each factor. Hence, when the value for the Supplier factor is set to None,
it is representing the state where the user does not specify an input. There are four
exceptions for which a more complicated procedure is applied. These exceptions include
the following factors: Industry, Country, Security Measure and Remote. In the Remote
case, a random number is generated with a probability of 66%, or the factor is set to None
in the remaining 34%. Since internally, the model later categorizes these numbers into one
of the five categories visible in Table 4.1, the categorization process is already performed
in the prepossessing. The get random value remote() function symbolizes this step.

1 for year in range (10):

2

3 input_year = 2012 + year

4

5 # for each year generate n datapoints

6 for i in range(nr_data_points):

7 capital = select_random_capital ()

8

9 row_dict = {"year": input_year , "capital": capital[i]}

10

11 # for each datapoint iterate over all parameters

12 for ind , row in df_param.iterrows ():
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13

14 # default

15 selected = [’None’]

16

17 # special case remote (random number between 0-100)

18 if row[’param_name ’] == "remote":

19

20 # in 30% of the cases it should be None

21 if random.uniform(0, 1) < 0.66:

22

23 selected = [get_random_value_remote(’param_name ’)]

24

25 # alternatively select one of the options (None included)

26 else:

27 selected = [get_random_value(’param_name ’)]

28

29 # in 50 % of cases add additional security measures

30 # or countries or industries

31 if row[’param_name ’] == ’industry ’ or

32 row[’param_name ’] == ’country ’ or

33 row[’param_name ’] == ’security_measure ’:

34

35 # with a probablitity of 50% and not all parameters

36 while random.uniform(0, 1) > 0.5 and

37 len(selected) < row[’nr_param ’]-1:

38

39 additional_param = get_random_value(’param_name ’)

40

41 # add the new parameter if it is not None

42 if additional_param != "None":

43 # add additional parameters

44 selected.append(additional_param)

45 # remove duplicates

46 selected = list(set(selected))

47

48 # if None was originally in the array

49 if len(selected)> 1 and "None" in selected:

50 selected = list(filter(

51 lambda item: item != "None", selected)

52 )

53

54

55 row_dict[row[’param_name ’]] = selected

56

57 # calculate the expected value based on business characteristics

58 row_dict[’EV’] = data_generator.get_expected_value (...)

Listing 4.2: Abstract Data Generation

The other exceptions are due to multi-selection. Since Small and Middle-Sized Enterprises
can operate in multiple countries and industries, this should also be reflected in the
data. Furthermore, companies might employ multiple security measures at the same
time. Therefore, the data generator keeps adding parameters to the factors Country,
Industry and Security Measure with a probability of 50%. During these operations, it is
crucial to ensure that the final array of parameters only consists of unique parameters
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and no None term since a user cannot select parameters of a factor while not providing
input information simultaneously.

Figure 4.16: Semi-Synthetic Data Along Capital and Cost Dimensions

In the end, the expected costs are calculated with the function developed in Section 4.2.5.
These costs are the y, or target value, in the generated dataset. Since the goal of the
later developed neural network model is only to predict the expected costs but not the
risk measure, no other variable has to be provided for an observation in the dataset.
If a quantile-based risk measure, namely the RCVaR, should also be determined by a
Machine Learning model, the CVaR must be added to each observation. After collecting
all variables for an observation, the factors, the expected values, the year, and the capital
are merged into a row vector. By repeating the above-described process for nr data points
required per year, the final semi-synthetic data set is created.

The result of the data-generating process can be observed in Figure 4.16. The figure
depicts the data plotted along the two non-restricted axes. Meaning that besides the
capital and the predicted cost, all variables have a finite number of possibilities (c.f Section
4.5). As one can observe in Figure 4.16, the data is well distributed among the two
dimensions. It further becomes clear that no point is negative as it should be. Moreover,
the expected cost increases the more the company is worth. This observed characteristic
reflects the relationship manifested in Equation 4.2. Additionally, the breadth in the
logarithmic y-direction stems plausibly from the customizing factors, including the time
scaler.



56 CHAPTER 4. THE REAL CYBER VALUE AT RISK MODEL

Assumptions

• Venture Capital market capitalization approximates the valuation of
SME.

4.4.2 Data Preprocessing

Since the data generated in Section 4.4.1 is semi-synthetic, only very little preprocessing
is needed before feeding it to the neural network for training. Nevertheless, some steps
are required to ensure a smooth training process. This section lists the steps sequentially
and explains them in detail.

• Special Column Naming: All the data except the equity value of a firm and its
expected financial loss are categorical variables. Thus, they have to be one-hot-
encoded to be used as input for the neural network. One-hot-encoding is a pro-
cess where each possible categorical value is represented by a binary vector in the
dataset [7]. Problematic in this context is that two variables with the same name
exist: The insurance industry and the Insurance factor. Since this would lead to
a single one-hot-encoded vector instead of two, the insurance sector is renamed to
insurance sector in the preprocessing.

• Introducing None: Another difficulty that arises in the context of one-hot-encoding
is due to the existence of None values. Every non-mandatory input can be None,
which then results in one binary vector for all None values during the one-hot-
encoding process. This result is undesirable since a non-specified Country factor
has a different impact on the expected cost than a non-specified Industry factor.
Therefore, to achieve multiple None one-hot-encoded columns, one for each factor,
the factor as a suffix was added to each occurring None value. For instance, if no in-
put is given for the Industry factor, the value None is replaced with None industry.
This procedure leads to factor-many one-hot-encoding vectors for the value None.

• One-Hot-Encoding: After the previous adjustments had been made, the data was
one-hot-encoded with the help of the MultiLabelBinarizer [138] of the sklearn pack-
age [122]. This complex binarizer was necessary because a single factor might have
a list of parameters as input, e.g. a firm could have offices in Canada and the US,
which would lead to an input of type: [CAN,US]. Since a one-hot-encoded for
both CAN and US was desired instead of one vector for each combination, a more
complex encoder had to be used.

• Remove Binary Input Variables: Some factors in Table 4.1 have only two possible
states. For instance, a firm can either have insurance or not. Technically, a third
state exists with the above-introduced None case. After one-hot-encoding these
states, there is redundant information in an observation data point. Since a zero in
the insurance column indicates a one in the No Insurance parameter column. The
redundancy of information does not bring any benefit. On the contrary, it increases
the issue of vanishing gradient because it adds a zero as input for any observation.
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To address this issue, redundant information is removed. More concretely, the one-
hot-encoded vector of the negative category of all binary factors is removed.

• Scaling: Besides the categorical data presented above, the input variables also con-
sist of numerical inputs in the form of year and capital as well as a numerical cost
output value. Even though these variables are essential, their higher value com-
pared to the ones and zeros of the one-hot-encoded vectors over-emphasizes their
contribution to the output. In other words, their influence on the outcome of the
neural network is too strong. Therefore, they must be brought in reasonable dis-
tance to the one-hot-encoded scale. In the case of the Year parameter, this was
done by subtracting the year 2009 from the specified input year. This scales the
years to a scale from 1 to 16. For the other two variables, capital and expected
cost, the MinMaxScaler [137] available in the sklearn package [122] was used. The
scaler adjusts the numerical values according to Equation 4.8 to a range of 1 to 20.
The relatively higher values of time and monetary valuation compared to the binary
values of the one-hot-encoded vectors should signal the neural net the importance of
the different inputs. The reason for the higher importance of numerical variables is
the fact that they impact the output more heavily than the customizing factors (cf.
Section 4.2.4). The most significant customizing component by far, for example, is
the size scaler presented in Section 4.2.1.

• Shuffle and Split: In the final step, the dataset is shuffled to remove the chronological
ordering introduced during data generation in Listing 4.2. After shuffling, the data
is split into train and test sets according to the ratio of 80:20.

X scaled =
X −X min

X max−X min
× (20− 1) + 1 (4.8)

4.4.3 Neural Network with FL

After the preprocessing step in the previous chapter, a neural network is trained with
Federated Learning as described in Section 2.3. The model architecture chosen for this
approach is a simple feed-forward neural network since it is the most common network
architecture used in the researched literature in Section 3.3. Furthermore, it is chosen
because a neural network can technically approximate any function [7], and therefore is
capable of learning the cost-estimating function. The exact architecture can be viewed
in Figure 4.17. In total, the network consists of 4 hidden layers, with the first two layers
having the same amount of neurons as the input layer. On the other side, the output
layer of the dense network consists of only one neuron, which contains the predicted
cost of a company. Due to a high probability of having multiple zeros in the 66 input
features, the danger of vanishing gradient is prevalent. To address this issue and achieve a
smooth training process, batch normalization [136] is introduced after every layer. Batch
normalization specifically means that each layer’s output is normalized to a distribution
with a mean of zero and a standard deviation of one [20]. Then before passing the output
further to the next layer, they are put through an activation function. In all the layers,
the same activation function was used: Relu [22].
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Figure 4.17: Neural Network Architecture for Federated Learning

The architecture in Figure 4.17 is trained in a decentralized manner. Meaning the model
is initially located on the server before it is shared among the clients participating in the
learning process. In the scope of this thesis, the Federated Learning process consists of two
clients and a server. All of these instances were running on the same machine and were
communicating the parameters of the model over the ports of the host machine. After
the model is shared with the clients, they train in parallel on their local dataset. The
randomly shuffled original training data, which stems from the train-test split conducted
in the preprocessing step, is divided into two equally sized training datasets. Other
partition strategies, such that specific parameters only appear in one client but not the
other, are also evaluated (cf. Section 5.3.2). The reason for these separation strategies is
to ultimately achieve two clients with different training data. Within each client, a second
split is performed to divide the data into actual training and valuation sets according to
a 90:10 ratio.

Each client then trains the model depicted in Figure 4.17 individually. Both use the Adam
optimizer [76, 23] with the Mean Absolute Percentage Error (MAPE) loss function [24].
The MAPE function computes the average deviation of the prediction to the true label
in percentage of the true label. This measure is chosen because the relative difference
between the result from the cost estimator model in Section 4.2.5 and the neural network
should be as small as possible. The Adam optimizer [76], on the other hand, updates
the weight parameters of the neural network according to the gradient. Adam uses two
momentum factors, namely the exponential moving average of the gradient and squared
gradient, to adjust the learning rate. These two momentum factors further decrease over
time by beta1 and beta2. The model weights are updated after each batch propagation
using the gradient, the two momentum factors, and a learning rate of 0.001. The exact
numerical values for the constants of the optimizer, batch size, and the learning rate can
also be found in Table 4.5.
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(a) MAPE Loss Round 1 Client 1 (b) MAPE Loss Round 1 Client 2

Training MAPE Validation MAPE

Figure 4.18: Mean Absolute Percentage Error (MAPE) of Clients in the First Round

For the first three server-side aggregation rounds, the models are trained on the client
side with ten epochs. This means the model will have seen each client’s data ten times
before it is sent back to the server. The relatively small number of epochs is chosen
because of a fast loss decrease in the first few epochs. Therefore, a small epoch number
reduces training time and allows for a more smooth model improvement on the server side
since no extreme weight deviations are expected in the beginning. Figure 4.18a and 4.18b
show both clients’ Mean Absolute Percentage Error of the first round. As expected, the
loss decreases relatively fast in the first two epochs in both clients. Visually, only minor
differences in the plot can be perceived.

In the last two of the five rounds, the model is trained with 40 epochs on the client side.
Figure 4.19a and 4.19b display both clients’ loss and validation loss for the fifth round. As
highlighted in both figures, the training loss settles somewhere in the interval of 2.4% and
2.6%. Furthermore, one can observe that the validation loss only passes the training Mean
Absolute Percentage Error between epochs 30 and 35. Consequently, the model does not
generally overfit during training. As in the loss graphs of the first round, it is evident that
both clients’ loss histories are very similar. This likely stems from similar observations
since the generated data was divided into two halves before the actual training. Therefore
other partition strategies are utilized in Section 5.3.2 to investigate if the model could still
learn the loss function with clients whose observations do not contain all cost parameters.

After each round, the model weights are sent back to the server, where they are aggregated.
To aggregate them, the default function is used, which calculates the average among the
returned parameters [92, 8]. After aggregating the weights, the model is evaluated on the
server with the test dataset. Therefore, the loss is not only tracked on the client side,
but also on the server side. Figure 4.20a shows the loss of the server-side model after
each round. It highlights the improvement of the MAPE from 80% to lower than 10%
over the training period. Furthermore, the Mean Squared Error (MSE) is also tracked
throughout the rounds. The MSE development can be noted in Figure 4.20b. Analogous
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(a) MAPE Loss Round 5 Client 1 (b) MAPE Loss Round 5 Client 2

Training MAPE Validation MAPE

Figure 4.19: Mean Absolute Percentage Error (MAPE) of Clients in the Fifth Round

to the decrease of the Mean Absolute Percentage Error, the Mean Squared Error decreases
similarly due to their likeness in computation. The final Mean Squared Error loss of the
server-side model settles below 0.5 in round 5.

(a) MAPE Server-Side Loss per Round (b) MSE Server-Side Loss per Round

Figure 4.20: Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE)

The complete Federated Learning process is conducted using the Flower framework [8].
Flower is a framework developed by the universities of Cambridge and Oxford. The
framework aims to enable researchers to conduct large-scale FL experiments. Additionally,
Flower supports, as one of the few frameworks, both TensorFlow [96] and PyTorch [149]
models. The Flower developers further claim that once the model is implemented, the
migration from simulated to real devices works seamlessly. To build the neural network
shown in Figure 4.17, TensorFlow with Keras [21] is used. The hyperparameters chosen
for the model are discussed in the text above or can be viewed in Table 4.5.
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Parameter Name Parameter Value
Train-Test Split 80:20
Train-Validation Split 90:10
Number of Clients 2
Number of Features 66
Optimizer Adam
Learning Rate 0.001
Beta 1 0.9
Beta 2 0.999
Loss MAPE
Batch Size 32
Epochs 40 (round < 3 → 10)
Rounds 5

MAPE = Mean Absolute Percentage Error

Table 4.5: Training Parameters for Federated Learning

4.5 Web-solution

The last contribution of this thesis is a web-based interface through which companies can
interact with the models developed above. This section depicts the components of the
website before taking a closer look at the output produced.

4.5.1 Architecture

Figure 4.21 shows the general components of the mobile responsive website. The left box
represents the application’s Frontend, developed using Meta’s React Framework [100].
Instead of Javascript, Typescript is used to enforce type specifications on functions and
variables [9]. The user interface with which a user interacts consists of three web pages.
The landing page is the Homepage, where the user receives general information about
cyber security. The second page depicted in Figure 4.21 is the RCVaR page. It is where
the user can interact with the models to compute the expected cost and the Cyber Value at
Risk. Upon completion of the input specifications, a GET Request is sent to the Backend,
which returns all necessary information to display the cost in the evaluation part of the
RCVaR page. The graphical output of the cost and Cyber Value at Risk information is
explained in Section 4.5.2. The last view of the application is the Documentation page.
Here, the user finds a short description of how to use the tool as well as how to interpret
the risk measure and the predicted cost. Furthermore, the semi-synthetic data set covered
in Section 4.4.1 is available for download. Last but not least, the Documentation page
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gives an overview of the most critical industry reports presented in the related work part
of this thesis (cf. Section 3).

Figure 4.21: High-Level Components of the RCVaR Website

The Backend of the application is developed in Python [46] using the Flask [55] framework.
It is a straightforward Backend architecture with only one API-Endpoint, which receives
the business characteristics as input and returns the results of the models. The Estimation
Process in the Backend calculates the predicted costs on the fly using the information from
the industry reports as well as the neural network. To predict the expected cost based on
the neural network, one has to one-hot-encode (cf. Section 4.4.2) the categorical values
and bring them in the correct order before a forward propagation through the network is
conducted.

The neural network was developed using the Federated Learning approach explained in
Section 4.4.3 and 2.3. For instance, the figure representing the Federated Learning process
is described in detail in Section 2.3. Overall, the key takeaway of the graph is that the
training process is separate from the website infrastructure. Therefore, the final model
from the simulation process from Section 4.4.3 needs to be migrated manually to the
website’s Backend. This process could be automated in a future version; respectively the
Federated Learning process could be included in the main web application (cf. Section
6.1).

4.5.2 User Interface

This section focuses on the RCVaR page presented in the previous chapter. In the web
page’s first section, the user must enter company-specific characteristics. These charac-
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teristics include the equity valuation, the location, or the industry of a company. Further-
more, the year for which the costs should be predicted needs to be inserted as input. The
user has the option to select any year from 2012 to 2025. This was done to avoid wrong
conclusions on years too far off from the range 2017-2020 since most data for the predic-
tion stem from this time frame. In addition to the company-specific values, a confidence
probability must be chosen, which represents the α percentile of the Cyber Value at Risk.
The default value for confidence is set to 95%. For example, a confidence of 97.5% means
that the probability of experiencing costs higher than the Cyber Value at Risk is 2.5%.

A complete list of all inputs, excluding the year, the capital, and the confidence, can be
found in Table 4.1 in Section 4.2.3. In Figure 4.22 below, one can view four examples of
how to enter business characteristics. The card in the top left corner shows the selection
of security measures of a company. Since a company can have multiple cyber defense
mechanisms, multiple instances can be selected. The Country or Industry factor inputs
behave similarly. On the top right corner, one can input the trust or the defense capabili-
ties of a company’s supplier by rating the security within a range of 0 to 5 with a step size
of 0.5. If the company has no connection to the supplier’s IT systems, then the switch
can be disabled, which signals the website to use the default value None.

Besides the year, capital and confidence, no input is required. Therefore these non-
mandatory values have the default value of None initially. Using the None value means
that the factor will not influence the average expected cost. Or expressed mathematically,
the unspecified factors are set to zero in Equation 4.7. Therefore, binary inputs such as
the existence of a multifactor authentication or the presence of cyber insurance require
a check box. This can be viewed in the bottom right corner of Figure 4.22. When the
check box is checked, the user can choose whether the Multifactor Auth factor should be
true or false, respectively, if multifactor authentication is deployed or not. When the box
is unchecked, the factor is set to None internally and the switch button disappears.

The last input card visible in Figure 4.22 shows how the user can enter a firm’s percentage
of remote workers into the model. To do so, the slider has to be moved to the correct
position. Like other input cards, the default value None is set for the Remote factor upon
disabling the check box in the middle of the input card.
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Figure 4.22: RCVaR Web-Interface for Four Input Factors

After all the inputs are specified, the user clicks the Evaluate button, which prompts
the model to predict the cost for the company. The first few outputs are visible in
Figure 4.23. It shows how the customization parameters listed in Table 4.1 influence the
average cost. As one can observe on the output card on the top left in Figure 4.23: The
supplier safety, Cyber and Behavior Analytics systems, multifactor authentication, and
the percentage of remote workers had a positive influence on the cost. Positive in this
sense means a reduction of the predicted cost. The percentage sign associated with the
parameters reflects how much of the reduction is caused by that parameter. For instance,
the Cyber and Behavior Analytics system contributed most towards the total reduction
of all the customizing parameters. However, it does not mean that the costs were reduced
by 50.7% due to Cyber and Behavior Analytics systems. The output card on the right
top works similarly, with the slight difference of focusing on the cost increase. These two
outputs allow firms to compare characteristics and prioritize business or security actions.
For example, a company should focus first on training its employees before considering a
cyber insurance since an untrained staff increases the expected cost more than incomplete
insurance coverage. In the next step, a consideration of the benefits of these two actions
against their costs needs to be conducted. The customized costs of cyber insurance and
cyber awareness training are publicly available and are therefore not included in this
thesis.

Furthermore, a firm can compare its cyber resilience against a customized benchmark.
The output card in Figure 4.23 compares the current cost against the cost if no or all
security measures are implemented. Security measures in this context mean all non-
core business characteristics. More specifically, the following factors are considered in
the benchmark: Training, Insurance, Multifactor Auth, Identity Access Management, and
Security Measures. All their parameters can be viewed in Table 4.1. It is crucial to
remember that this scoring does not represent risk. Instead, the benchmark is the same
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company but with different security measures. It gives a firm an indication if costs have
the potential to be reduced. It further gives them a reference point whether the expected
costs returned by the system are rather high or low.

Figure 4.23: Web-Interface for Cost Decomposition and Factor Analysis

The last card in the bottom left of Figure 4.23 depicts how costs are composed. These
numbers stem from the IBM report [27] and do not fluctuate significantly over the years.
Nevertheless, it helps companies to locate where in the company the highest costs occur.
Upon locating the problem, one can use this information to increase resilience in a partic-
ular area. For example, it becomes clear that the highest cost contributor is lost business
revenue (42%). As known from the output card on the top right, the primary increasing
cost driver is the lack of training (50.7%). Therefore, a reasonable action to increase cy-
ber resilience is to provide training to the staff closest connected to the IT systems which
enable daily operations. In a retail setting, this could apply to the salesmen and women
who gather customer information upon checkout.

Figure 4.24 highlights the numerical output of the different models. The card in the
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upper left corner shows the predicted cost by Equation 4.7 and therefore represents the
“exact” cost. On the other hand the value in the bottom left corner shows the expected
loss estimated by the AI model. As one can observe, the two values are at a reasonable
distance from each other, indicating a good-performing Federated Learning process (c.f
Section 5.3). Figure 4.24 furthermore depicts the Value at Risk for the company. The
VaR represents the costs not exceeded by the realized costs with a certain confidence. It
is noteworthy that the RCVaR has a constant variance as described in detail in Section
4.3.2. Consequently, the Value at Risk represents a linear transformation, namely a mul-
tiplication of 2.9 with the expected value in the case of 95% confidence. Nevertheless, the
risk measure is a foundation for a security-investment-risk analysis during the planning
management process (cf. Section 3.4.2). The last card in Figure 4.24 indicates the param-
eter from the factors Training, Insurance, Multifactor Auth, Identity Access Management,
and Security Measures that is not yet implemented and that would have the highest effect
on reducing the average cost.

Figure 4.24: Web-Interface for Numerical Output of Cost Analysis

Besides the outputs presented here, the website further displays the customized cost dis-
tribution with appropriate coloring for interpretation (cf. Figure 4.15). All the outputs
are presented in an easily interpretable manner, with a short explanation available on each
card. This provides Small and Middle-Sized Enterprises with the opportunity to assess
their possible cost together with their risk. The website further provides insights on how
to reduce the expected cost. The following steps after the RCVaR analysis are to research
the cost of the most efficient security action. These costs vary across countries and in-
dustries and are not included in this thesis. After reaching a good pricing overview of the
offered products and actions one can come back to the website and assess the total costs
(investment costs + cost predictions) against the risks and the cost-benefit of the action.
When using the results with careful consideration of the model’s assumptions, the Real
Cyber Value at Risk (RCVaR) can be a valuable addition to the cyber risk management
process (cf. Section 5).



Chapter 5

Evaluation

This chapter assesses whether the three main objectives of this thesis have been achieved.
To investigate the extent to which the cost estimation model reflects real-world behavior,
a quantitative and qualitative evaluation is conducted. To assess the accuracy of the
risk measure, the cost distribution is compared to that of related research. Finally, the
Federated Learning model is assessed by comparing the performance of different models.

5.1 Cost Estimator

First, the model is evaluated by applying it to multiple theoretical companies and compar-
ing their predicted losses. This approach allows assessing the model’s ability to replicate
real-world behavior as indicated by industry reports. In the second part of the chapter,
the estimated financial loss obtained using the RCVaR is compared with actual costs in
two use cases.

5.1.1 Qualitative Evaluation

To evaluate the RCVaR qualitatively, the cost behavior of its results is compared to
the loss patterns found in the industry reports (cf. Section 3.2). Table 5.1 illustrates a
selection of hypothetical firms from the data generation process (cf. Section 4.4.1). The
columns show the firm’s specifications that were used as input into the Real Cyber Value
at Risk model. The output of the RCVaR can then be viewed in the last two columns to
the right. The colors in the cells indicate whether the parameter influences the average
cost for a particular capital and year positively (reduces the cost → Green) or negatively
(increases the cost → Red). If no specification is provided to the Real Cyber Value at
Risk, the cell is colored orange.

Upon examining Table 5.1, it is clear that all firms, except Firm 13, have the same equity
value (i.e., capital). This uniformity in market capitalization allows for the independent
study of the impact of cost factors (cf. Section 4.2.3). Additionally, a comparison between
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Firm 13 and Firm 2 illustrates that the RCVaR effectively adjusts costs based on a com-
pany’s financial capital (cf. Section 4.2.1). This phenomenon has been well documented
in previous research [36, 102, 153].

Similar to the financial size of a company, costs also tend to increase over time. When
inspecting Table 5.1, one notices that all firms predict the cost for the year 2022, except
Firm 14. This company can be contrasted with Firm 5, which has the same business
characteristics but much higher costs. This stark difference in costs for different years
aligns with the findings of the Accenture [2, 3] and IBM [27] reports, which both state
double-digit cost growth during their research period.

As previously discussed in Chapter 4.2.4, the Country factor has a significant impact on
costs. Examining the two banking firms, Firm 3 and Firm 15, it becomes apparent that
the German company has approximately $ 30’000 higher costs than the French company.
This trend is also reflected in real-world data according to IBM [27] and Accenture [2, 3]. A
similar pattern can be observed when comparing Firm 7 and Firm 16, which both operate
in the healthcare sector: The US-German pharmaceutical company has significantly higher
costs, as estimated by the RCVaR model, compared to the German enterprise. In fact,
related literature [27, 2, 3, 72, 43] supports the notion that North American companies
tend to have higher cyber costs.

The second highest cost contributor is the number of employees. A comparison of Firm
6 and 7 highlights the difference between a Large and Medium sized company. If other
factors such as Country also positively influence average cost, the predicted loss can be
reduced to a tiny amount, as can be seen in the case of Firm 4. The size of a company has
also been identified as an essential cost contributor in multiple research papers [36, 102, 2].

Similarly, the Industry factor has also been well-researched in related literature [36, 102,
2, 3, 27, 126, 128, 139]. In particular, financial institutions tend to have high cyber attack
costs [36, 153]. This situation is also reflected in the output of the RCVaR model for Firm
16 and Firm 15 in Table 5.1. Other relationships, such as the higher cost of industrial
manufacturers compared to retailers [102] (Firm 1 vs. Firm 2) or the significant impact
of attacks on healthcare providers, are also reflected in the comparison provided in the
table.

In general, the companies that have better security measures tend to have lower expected
costs [36, 27, 2, 31]. For instance, most companies with three security measures deployed
have costs below $ 40’000. Additionally, it is noteworthy that Firm 1 is the only Large
company in the table with costs below $ 100’000. Comparing Firm 7 and Firm 5 also
illustrates the influence of the cloud model and the percentage of remote workers on the
cost estimation by the RCVaR model. The output suggests that firms with a smaller
remote workforce and a hybrid cloud model tend to sustain lower costs due to cyber
attacks. This realization aligns with the argument presented in the IBM [27] report,
which shows this exact correlation between the cloud model, remote workers, and costs.
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Firm 1
Risk Management

2022 $ 70 M GER Retail Large Public 40% 0 1 1 1 - Advanced Perimeter Controls $ 98’209 $ 96’623
Data Loss Prevention Measures

Firm 2
2022 $ 70 M CAN Industrial Large - 20% 0 - 0 1 - - $ 137’646 $ 128’690

GER
Firm 3 2022 $ 70 M FRA Banking Large - 20% 1 1 1 1 1 Encryption Technologies $ 129’780 $ 122’398
Firm 4 2022 $ 70 M ESP Life Sciences Micro Private 20% 0 0 0 0 0 - $ 6’390 $ 6548

Firm 5
2022 $ 70 M US Insurance Medium Hybrid 20% 1 1 1 1 1 Cyber Analytics and Behavior Analytics $117’680 $109’639

Advanced Identity and Access

Firm 6
2022 $ 70 M US Health Large - 100% 1 0 0 1 1 Data Loss Prevention Measures $ 473’101 $ 288’054

CAN High Tech

Firm 7
2022 $ 70 M US Health Medium Public 80% 1 0 0 1 1 Security Intelligence System $ 280’245 $ 220’435

GER Pharmaceuticals

Firm 8
UK Energy Risk Management

2022 $ 70 M SCA Industrial Large Public 20% 0 1 1 0 - Security Intelligence System $ 15’547 $ 16’168
TUR Data Loss Prevention Measures

Firm 9
Sufficient Security Staff

2022 $ 70 M ITA Consumer Goods Medium Private 20% 0 0 1 0 - Security Intelligence Systems $ 36’116 $ 34’939
Incident Response Plan Testing

Firm 10 2022 $ 70 M CAN Retail Small - 20% 0 - 0 1 1 - $ 44’556 $ 43890
Firm 11 2022 $ 70 M GER Education Small - 20% - 1 0 1 0 - $ 28’676 $ 28’475
Firm 12 2022 $ 70 M US Public Sector Medium Private 20% - 1 0 1 1 Automated Checks & ML and AI $ 79’337 $ 75’155

Firm 13
2022 $ 34 M CAN Industrial Large - 20% 0 - 0 1 - - $ 71’290 $ 64’772

GER

Firm 14
2014 $ 70 M US Insurance Medium Hybrid 20% 1 1 1 1 1 Cyber Analytics and Behavior Analytics $ 51’064 $ 47’349

Advanced Identity and Access
Firm 15 2022 $ 70 M GER Banking Large - 20% 1 1 1 1 1 Encryption Technologies $ 157’214 $ 144’155

Firm 16
2022 $ 70 M GER Health Large Public 40% 0 1 1 1 - Incident Response Plan Testing $ 149’360 $ 140’951

Data Loss Prevention Measures

Cost Increasing Factors, Cost Decreasing Factors, No Input Provided and Therefore No Influence on Cost

Table 5.1: Hypothetical Companies and Their Associated Costs
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5.1.2 Quantitative Evaluation

As part of the evaluation, the output of the cost estimator model is compared to cost
predictions found in related literature. When evaluating the model, the most prevalent
problem one faces is the lack of data. The few public cost numbers are anonymized, thus,
the link between business characteristics and loss prediction is difficult to establish. In
the scope of this quantitative evaluation, the focus lies on two reports. Important to point
out is that both reports have not contributed any number to the development of the cost
estimator. Therefore, these numbers can be viewed as Out-of-Sample test data, i.e., the
model has not seen the data previous to this test run.

The first cost estimation number found in the literature stems from the Kaspersky report
[72] of the year 2013. Very similar to the methodology of the Accenture reports [2, 3],
Kaspersky conducted roughly 3000 interviews with IT specialists familiar with both IT-
security as well as the business process in their companies. The total sample consisted
of 2364 companies, which were divided into two groups depending on their amount of
computerized workplaces. Companies with less than 1500 workplaces are labeled as SMEs,
while the others belong to the group of large corporations. One conclusion based on the
survey was that the average loss of Small and Middle-Sized Enterprises due to a cyber
incident is $ 50’000 (cf. Section 3.2).

Given the Venture Capital data from Pitchbook used to generate data, it is possible to
approximate the average equity value of an SME for the year 2022. Combining this infor-
mation with the year the Kaspersky study was conducted, all the information necessary
to calculate the expected yearly cost is given. Upon entering the target year 2013 with
a market capitalization of $ 168 million, the model discounts the equity to the year 2017
(cf. Section 4.2.2) before converting it to cost (cf. Section 4.2.1) and further discounting
them to the desired year. The output of the RCVaR model results in costs of roughly $
70’000. This amount can also be observed in Table 5.2. There, it is highlighted that the
estimation deviates from the true value (Absolute Percentage Error) by 37%.

It is important to be cautious when interpreting this number. An error of 37% can be
viewed as inaccurate. Nevertheless, it is crucial to point out that the $ 50’000 of the
Kaspersky report portray the average bill per serious incident, while the cost prediction
of the RCVaR model represents the total annualized incidents costs. Given that compa-
nies have multiple severe incidents per year on rare occasions, annualized costs of 70’000
seem plausible. Furthermore, it is noteworthy that the VC equity input might lead to
overestimating the cost in this specific instance since Venture Capital valuations spiked
in the first quarter of 2022 and reached a record high. If the value is smoothed with
the average over the past 12 months, the equity approximation of SMEs is equal to $
134 million. After re-running the estimation with this market capitalization value, the
RCVaR results in a yearly cost estimation of $ 55’728, which is very close to the value of
the Kaspersky report [72].

In the past two years, multiple studies [158, 36] focusing on econometrics have researched
the cost of cyber attacks based on insurance risk premium data. Theoretically, the pre-
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Cost Source
Cost Estimation

of Source
Cost Predicted
using RCVaR

Absolute Percentage
Error

Kaspersky Report [72] $ 50’000 $ 68’786 37 %
Woods et al. [158] $ 428’000 $ 420’444 2 %

Table 5.2: Unseen Cost Estimation Vs. RCVaR Cost Prediction

mium paid by the insuring company to hedge against cyber incidents reflects the firm’s
belief about future costs. The study conducted by Woods et al. [158] used pricing data
from roughly 7000 observations across 26 insurance firms to derive a real-world cost dis-
tribution. Based on this distribution, the authors predict the price of a hypothetical retail
company. Additionally, it is known that the insurance data consists of only US, primarily
Californian, companies. Therefore, it can be assumed that the insured company is also
based in the US. Another piece of information provided about the retail company is its
yearly revenue of $ 50 million. Given the Return on Equity (ROE) ratio, the revenue can
be converted to equity. The Return on Equity (ROE) is a percentage measure representing
the ratio of revenue in terms of the money invested to achieve this income [35].

Using this approach to determine market capitalization has two advantages. First of
all, the Return on Equity is deeply anchored in the economic literature [35, 110], and
therefore there exists a lot of researched statistical data for different regions and industries.
Secondly, not determining the equity value through Venture Capital data gives insights
into the robustness of the RCVaR model due to the strong dependence on the capital
input in the model. Applying the ROE data from the prestigious NYU [110] to convert
the revenue to equity, one receives a market capitalization of $ 249 million for US-based
general retail companies. Adjusting for inflation, today’s equity value equals $ 253 million.
Providing the industry (Retail), the equity value ($ 253 million), the location (USA) and
the desired year (2021), which is the year the study was conducted. All the information
needed to analyze the firm with the RCVaR is given.

The comparison of the result from the study presented in [158] and the output of the
Real Cyber Value at Risk shows that they are very close together. In contrast to the
Kaspersky report [72], both numbers resemble the annualized total cyber incident costs.
It can be inferred that the more information is provided to the RCVaR, the more accurate
the prediction is. Furthermore, it shows that the output has a real-world connection and
can approximate the cost numbers of two reports with different methodologies, regions,
years, and information sources.

In summary, the RCVaR yields accurate predictions when tested on “unseen” data. Even
if the input information is scarce, the Real Cyber Value at Risk still provides the user with
an estimation in the correct area. The more information is entered, the more accurate
the model becomes. Furthermore, both evaluation experiments show that the Real Cyber
Value at Risk is rooted in the real world and is not just of theoretical nature. Based on
the information extracted from seven industry reports [27, 2, 3, 10, 126, 127, 128], the
proposed Real Cyber Value at Risk model achieves highly accurate cost predictions on
theoretical and real-world firms.
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5.2 Risk Measure

In this chapter, the risk measure developed within the context of this thesis is examined.
While there is little empirical data available on the Cyber Value at Risk (CVaR), one
source that exists is a report by Deloitte [157] which studied the Value at Risk of cyber
incidents in the Netherlands for various industries. However, due to limited information
on business characteristics and the inability of the RCVaR to make predictions for Dutch
companies, a different approach has been chosen.

The loss distribution is evaluated by comparing the cost distribution of the General In-
verse Gaussian (as proposed in this thesis) with the cost distributions of related research.
According to [37], both Log-Normal and Skew-Normal distributions provide a good fit
for the actual distribution, though other distributions may also perform well. But it is
considered inevitable that the financial impact of cyber incidents follows a heavy-tailed
distribution, as supported by [78, 158].

Other distributions mentioned in the literature include Power-Law, Pareto, and Weibull.
It is worth noting that none of these distributions could be rejected through the Kolmogorov-
Smirnov test conducted in the scope of this thesis (cf. Section 4.3.2). The Pareto distri-
bution even had the fourth highest probability after the General Inverse Gaussian. Given
the similarity between these distributions, it can be assumed that the risk measure of
the RCVaR is a good approximation of real-world circumstances. The main difference
between distributions in cyber economics research is whether or not the cost density at
the origin is zero. Since this thesis considers all incident costs, including Indirect and
Opportunity costs, it is assumed that the costs are never zero, even with no successful
attack occurring. As a result, bell-shaped curves such as the Weibull or Skewed-Norm
distributions, which are mentioned in [78, 158], are considered to be a better fit.

(a) Cost Distribution Based on MARSH [93] (b) Cost Distribution of the RCVaR

Figure 5.1: Cyber Cost Density Distributions MARSH [93] Vs. RCVaR

In Figure 5.1a, one can see the cost distribution generated by MARSH [93] using Monte
Carlo Simulations (cf. Section 2.2). MARSH already utilizes the CVaR derived from this
distribution to advise their clients on cyber security planning. On the hand, Figure 5.1b
depicts the distribution of the RCVaR derived in the scope of this thesis.
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Upon comparing these two graphs, it becomes clear that they have similar shapes. The
only difference is that the RCVaR has density zero at the origin, which can be explained
by the different definitions of cyber attack costs. Based on the matching distributions
in the literature and the cost distribution of the RCVaR, it can be concluded that the
RCVaR is relatively closely approximating the distribution of real-world costs.



74 CHAPTER 5. EVALUATION

5.3 Federated Learning

This section focuses on the evaluation of the Federated Learning model introduced in
Section 4.4.3. First, the performance numbers of the deployed model are explained. Then,
the same model is trained using different data splits to simulate real-world training among
clients and compare the performance of these models to the deployed model. Finally,
the results of the original FL are shown in contrast to the output of two centralized
model architectures. The overall conclusion drawn from this chapter is that neither the
different data splits nor the centralized training approach result in significantly different
performance measures compared to the original model.

5.3.1 Quantitative Evaluation of the Neural Network

The center of attention in this chapter lies on the originally trained Federated Learning
model. It is trained on two halves of the dataset generated in Section 4.4.1. To establish
the two halves, each observation is assigned randomly to a client until both have the
same amount of observations. After distributing the data among the clients, the FL is
conducted as follows: The server shares the central model with the clients, which train
the model on their half of the data. Then, the parameters are sent back to the server,
where they are aggregated before sharing the updated model again. This circular process
is repeated multiple times until the model converges. The final result is the model with
the aggregated weights on the server.

Figure 5.2 depicts the test subset of the generated data. Each observation in the figure
consists of 14 dimensions: The expected value, capital, year, and all other 11 factors.
When plotting the observations by the capital dimension on the x-axis and the target
variable, namely the true expected cost, in logarithmic scale, on the y-axis, one receives
Figure 5.2.

The coloring indicates the Absolute Percentage Error (APE) of each observation. The
Absolute Percentage Error, in this case, is the absolute deviation of the model estimation
in percentage points of the actual value. More concretely, blue means that the predicted
cost deviates more than 10% from the cost predicted by the function in Section 4.2.5.
Green means that the deviation is less than 10%, and an orange coloring indicates that
the APE is less than 5%. As Figure 5.2 highlights, the model is more accurate in predicting
higher expected costs than smaller impacts. This circumstance is likely attributed to an
imbalance in the total generated data since less than 5% of the generated data has an
expected financial loss of less than $ 1’000. This imbalance is not problematic since costs
of less than $ 1’000 are a rare occurrence because it would require a firm to deploy many
security measures while having shallow equity reserves. Consequently, it is unlikely that
poorly capitalized firms will invest in many IT-security products simultaneously. Related
research, specifically the Accenture report [10], supports this hypothesis. Nevertheless,
one could improve the model’s accuracy in the low cost area by producing more semi-
synthetic data with the existing process or by developing a new data generation process
with less imbalanced data.
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< 5%, < 10%, > 10%

Figure 5.2: Differences Between the Predicted and the True Values on the Test Sample

The overall percentage of test observations with a deviation of less than 10% is 78.11% in
Figure 5.2. By achieving a training Mean Absolute Percentage Error of roughly 2.5% and
a test APE of below 10% for the majority of observations the model can be considered as
good [148]. Upon investigating Figure 5.2 further, it becomes evident that no observation
accomplished an Absolute Percentage Error on the test set of below 5%.

When observing Figures 5.3a and 5.3b, one can also view the ability of the model to learn
the parameter ratios from Equation 4.5. In both figures, one line represents the true target
costs from Equation 4.7, while the neural network model creates the other cost line. The
lines of the model are generated by varying one factor of an observation while keeping the
others the same. For instance, Figure 5.3a is produced by inputting nine observations,
which are all the same except for their Country factor, into the FL model. If the neural
network would exactly predict the correct costs for the different countries, the two lines
would lie perfectly on top of each other. Or formulated differently, the distance between
the lines represents the error, while the similarity in the line shape reflects if the correct
relative importance between the parameter ratios is learned. Despite the error, both
Figures highlight that the model learns the relative relation of the parameter ratios well
due to their similar shapes. The only constant that is not learned well is the Insurance
parameter in Figure 5.3b.

To increase the model’s overall performance, it must be trained on larger datasets. A
preliminary experiment conducted in the scope of this thesis shows that the set of obser-
vations with a deviation of less than 10% increases to 91.02% (cf. Appendix A.2) when
training the model on a data set of 500’000 observations. Nevertheless, even when training
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on a larger dataset, no test observation achieves an APE of below 5%. It can be assumed
that the training set needs to be increased even more to achieve such test errors. Since
the main focus of this thesis is not on developing the best neural network to approximate
the RCVaR equation, training the model on more data is out of the scope for this thesis.
Furthermore, the training time increases dramatically with larger data samples. Hence
this thesis’s primary model is trained on 100’000 observations.

(a) Cost Deviations Along Country Dimension (b) Cost Deviations Along Industry Dimension

Cost Predicted by RCVaR Cost Predictor (Equation 4.7) Cost Predicted by Machine Learning Model (ANN)

Figure 5.3: Cost Accuracy Along Factor Dimensions (FL/Random Split/40 epochs)

To conclude this section, the Federated Learning approach manages to learn the cost
function established in Section 4.2.5 well. An Absolute Percentage Error of less than 10%
for the majority of the test samples is considered good [148] even though no observation
in the test sample broke the 5% mark. The overall performance can be increased when
training the model on more data. However, it remains questionable if test observations
with a low MAPE can be achieved consistently.

5.3.2 Comparison of Different Data Splits

As shown in Section 5.3.1, the model, trained with two clients, performs well. Previous to
the training, the observations are assigned randomly to the clients to create the different
datasets. Since the data consists of 100’000 observations and the combinations of factors
are limited, both clients likely have similar combinations in their data halves. Hence, if the
data between the clients is not vastly different, the whole model could also be trained just
with one client, which would be equal to centralized learning. To prove that a genuinely
Federated Learning process can learn the cost function defined in Section 4.2.5, one has to
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show that similar performance can be achieved in a training environment where specific
parameters only occur in a single client.

The new model’s performance with the same architecture and hyperparameters, as de-
scribed in Section 4.4.3, can be viewed in Figure 5.4. The only difference to the previous
training process is that the data split is not conducted randomly but according to simple
rules to ensure heterogeneous data halves. Figure 5.4a shows the model’s performance
trained on data that is split according to the Country factor. The reasoning behind this
approach is that Small and Middle-Sized Enterprises often are not multi-national firms.
Therefore, they will not have local cost data available for different locations to train the
model. To simulate this behavior, the data is divided so that the first client only has
observations from the USA, UK, France, and Italy. While the second client contains firm
data for Canada, Spain, Turkey, and Scandinavia.

(a) (FL/Country Split/40 epochs) (b) (FL/Quantile Split/40 epochs)

< 5%, < 10%, > 10%

Figure 5.4: Differences Between the Predicted and the True Values on the Test Sample

As expected, the model trained on the country-split data achieves a very similar per-
formance as the original FL model from Section 5.3.1. With roughly 85% of all test
observations having a deviation of less than 10% from the true value, the model’s predic-
tion of Figure 5.4a outperforms the original model. The country-split model can especially
achieve higher accuracy in the low-cost environment in the lower left part of the graphic.
This difference in performance compared to the original model is likely caused by the way
the data is split. When looking at the parameters of each client in more detail, one rec-
ognizes that client 2 possesses countries associated with relatively lower costs. Therefore,
client 2 focuses specifically on the low-cost area during training, whereas in the previous
data split, these observations were divided among the clients. A second explanation could
be that, despite the expectation previous to the country-split experiment, the clients’
data distributions after the country split are “more” similar to each other and the true
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data distribution. As suggested by [109, 162, 120], the performance of models could vary
based on how accurately the clients’ distributions reflect the overall data structure when
training on data that is not Independent and Identically Distributed (IID). Since the data
generation process in Section 4.4.1 generates the capital based on a restricted normal
distribution and the factors with varying probabilities, the observations do not have the
same probability of appearing in the generated data set. Hence, they can not be described
as Independent and Identically Distributed. Therefore, it can be argued that the original
split creates distributions in the clients that differ more from the overall density structure
than the country-split distributions. Such a minor difference in data distribution could
lead to reduced performance compared to the centralized model [120]. In other words,
despite the previous expectation, the client’s distributions from the country split could
resemble the actual distribution of the data more closely and, therefore, could lead to
higher accuracy, as visible in Table 5.3. Nevertheless, the higher performance can also
be due to the randomness of shuffling the training data. Therefore, more simulations are
needed to paint a complete picture.

The influence of IID data in Federated Learning can also be observed in Figure 5.4b. It
depicts the performance of the FL model trained on data split along the capital dimension.
Meaning the observations are either assigned to client 1 if their capital is in the lower half
of all equity values or to client 2 if their value is higher than the 50% quantile. Because
the data is split across two clients, the 50% quantile is used as the dividing threshold.
Alternatively, in other words, the threshold for two available clients is the median of all
equity values. When looking at the training data of both clients in Figures 5.5a and 5.5b,
it becomes evident that each distribution does not follow the shape of the proper dataset,
as observed in Figure 4.16.

(a) Observations With Below Median Equity (b) Observations With Above Median Equity

Figure 5.5: Training Data Distribution of Capital Quantile Split

Based on the different local distributions in Figure 5.5, the aforementioned issue of Non-
IID data becomes apparent. When looking at the model’s performance on the data split
along the capital dimension, it can be observed that the FL network predicts the cost
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in the low capital area well. This is most likely because one client solely consists of low
capital observation. Thus the FL model is more focused on this region during training.
However, it is apparent from the numbers in Table 5.3 that there are only 75% green
observations. Meaning that the model trained on the quantile split achieves the lowest
amount of observations with a deviation of less than 10% from the true cost value of all FL
models. When comparing the two models regarding the fixed factors Country and Industry
(cf. Appendix A), it can be observed that the lines are very similar to the ones depicted
in Figure 5.3. Depending on their accuracy, they only differ in the distance between the
true and the predicted lines. Interesting in this regard is that the “quantile” model’s
predictability of the Country parameter is much better than in all previous models. This
could stem from the fact that the parameter ratios have a relatively higher weight when
training on lower capital data. The complete line graphs can be found in Appendix A.

To summarize this section: The data split can make the difference between a good and an
excellent performance. Hence Federated Learning should be able to reproduce the cost es-
timation function sufficiently no matter the data distribution among clients. Nevertheless,
enough clients must participate so that the model can achieve outstanding results.

Model > 10 % < 10 % < 5 %
Federated Learning (Random) 21.88 % 78.11 % 0.0 %
Federated Learning (Country) 15.02 % 84.98 % 0.0 %
Federated Learning (Capital) 24.86 % 75.14 % 0.0 %

Table 5.3: Absolute Percentage Error (Accuracy) Comparison of Different Data Splits

5.3.3 Comparison to Centralized Models

In the final evaluation step, the performance of the “decentralized”model is compared to
a centralized approach. Meaning the same model is trained on the complete dataset on
the server. Besides the epoch, all parameters stayed the same during the training process
to allow an effective comparison between the two architectures. The epoch was altered
minimally to elicit a good epoch number to ultimately compare the Federated Learning
model to the “best” possible model trained with the complete dataset.

Figure 5.6a shows the predictions against the true target values of the centralized model
trained with 50 epochs. The observations colored green indicate that their prediction
deviates less than 10% from the actual value, whereas the light blue represents observations
with a prediction which is more than 10% off. As can be observed, the performance is
vastly the same compared to the Federated Learning model. A slight difference is that the
centralized model has higher accuracy in the low-cost area. Since less data is available for
this area, the FL model might lose some of its predictability during the aggregation in the
data-poor region. As with the different data splits (cf. Section 5.3.2), the small difference
in performance could also stem from the fact that the distribution of data among clients
differs heavily. This circumstance is documented in the Federated Learning literature
[109, 120, 162], which states that the performance of a “decentralized” model might be
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worse if the local data distributions are not similar. The results from Section 5.3.2 further
support this fact since different data split approaches lead to higher accuracy over the
complete dataset.

Table 5.4 shows the accuracy of different models compared to the original model (top
row) from Section 5.3.1. The best-performing Federated Learning model, which is the one
trained on the country split, is also included in the second row. It becomes clear that
there are only minor differences in performance between the centralized Artificial Neural
Network and the Federated Learning models. For instance, none of these models achieves
a deviation of less than 5% for any observation. Overall, the deviation percentages of less
than 10% fluctuate within the range of 75% to 85%. Considering that a Mean Absolute
Percentage Error of less than 10% is considered good to very good [148], all models are
deemed capable of approximating the cost function of Section 4.2.5.

(a) (ANN/Complete Data/50 epochs) (b) (RF/Complete Data/ -)

< 5%, < 10%, > 10%

Figure 5.6: Differences Between the Predicted and the True Values on the Test Sample

The literature review conducted in Section 3.3 shows that the most promising and most
frequently used ML architecture type to approximate risk or cost functions is the Arti-
ficial Neural Network. The second place takes the Random Forest (RF) architecture. A
Random Forest consists of multiple decision trees whose output is aggregated [147]. In
the case of cost estimation, the predictions of each single decision tree are aggregated by
taking the overall average. In this thesis’s scope, an RF model is built using Google’s
TensorFlow framework [94]. The tree-based model is configured with 500 individual trees
with a depth of ten. When applying the Random Forest model on the semi-synthetic
dataset, it yields the test performance portrayed in Figure 5.6b. The figure signals that
the RF achieves very high performance on a few observations, while having an enormous
deviation from the true value in the majority of cases (84%). The exact performance
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statistics can be observed in Table 5.4. The differences in performance between the ANN
and the RF architecture are likely related to the incapability of the Random Forest to
capture trends and handle sparse data [88]. Since the data consists of many binary inputs
and can be described as sparse, the RF model is not the best fit. Overall the RF model
achieves a deviation of less than 5% for 8% of all test observations depicted in Figure
5.6b.

(a) Cost Deviations Along Country Dimension (b) Cost Deviations Along Industry Dimension

Cost Predicted by RCVaR Cost Predictor (Equation 4.7) Cost Predicted by Machine Learning Model (RF)

Figure 5.7: Cost Accuracy Along Factor Dimensions (RF/Complete Data/ -)

The centralized ANN and RF performance can also be evaluated according to Figure 5.7.
Since the lines for the neural network trained on the complete dataset look very similar
to the ones of the Federated Learning model, they are omitted in this section but can
be viewed in Appendix A. This section focuses on the RF’s line charts, which are visible
in Figure 5.7. It shows the predicted versus the true cost along either the country or
industry dimension. To generate both plots, all other inputs, such as capital and year, are
fixed. As can be seen in Figure 5.7a, the Random Forest manages to capture the relation
between parameter ratios of the locations Turkey, Scandinavia, Spain, Canada, and the
US relatively well. While it fails to reproduce the shape of the line between Italy and the
UK. Nevertheless, the closest estimation with an APE of 21% (Turkey) is still far off from
the true label. A worse picture is painted by Graph 5.7b, which shows the inability of the
Random Forest to estimate the costs of firms among most industries correctly. Although
most of the predictions are far off, there exist a few industries that have a very low error.
For instance, the prediction for the firm for the education industry has only a deviation
of 1% from the true label. However, starting from the parameter Life Science the APE
starts to grow from 10% to almost 60%.

Overall, it can be concluded that the centralized Artificial Neural Network has a very
similar performance to the neural network trained with Federated Learning. A look at
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Table 5.4 even reveals that the FL model trained on data divided along the country dimen-
sions achieves higher accuracy than the centralized model. Nevertheless, the differences
between the central and the FL are minor, which indicates that Federated Learning is a
viable solution to tackle the data scarcity problem in the cyber security economics field.
Additionally, a centralized Random Forest model was evaluated. It achieved superior
performance than all other models in a few observations while failing to perform well on
the broader dataset. Hence it can also be concluded that the RF model is not well suited
to be trained on the semi-synthetic dataset available on the thesis’ website.

Model > 10 % < 10 % < 5 %
Federated Learning (original, 40) 21.88 % 78.11 % 0.0 %
Federated Learning (country, 40) 15.02 % 84.98 % 0.0 %
Random Forest 84.22 % 8.0 % 8.0 %
Neural Network (40) 24.31 % 75.69 % 0.0 %
Neural Network (50) 16.79 % 83.21 % 0.0 %
Neural Network (60) 23.26 % 76.74 % 0.0 %

Table 5.4: Absolute Percentage Error (Accuracy) Comparison With Centralized Models

5.4 Limitations and Discussion

Both the risk measure and the cost estimation model underlie certain limitations. There-
fore, the predictions in terms of risk and cost need to be consumed with caution. The base
assumption that the later developments build upon is that survey data reflects the actual
numbers accurately. Even though Accenture and IBM introduced checks and balances
during their development, it cannot be ensured that the survey results are perfectly accu-
rate. Especially since selection bias could have been introduced. Further data pollution
could have occurred during the data extraction phase with OpenCV [132].

Due to the anonymization of data, only the relationship between one factor and costs
can be observed at a time. However, cross-correlation effects can occur. For instance, the
Industrial and the No Identity Access Management parameter increase the costs when they
occur individually. This does not mean that their combinatorial appearance automatically
has the same effect. However, the diverse data sample and careful factor selection suggest
that the model’s output is unlikely to be significantly skewed due to cross-correlation
effects. Nevertheless, every cost prediction should be subject to a common sense review
to ensure reasonable results.

Another assumption on which the model output relies heavily is that the average market
capitalization of the Accenture sample can be approximated with the equity values of
firms in the Russell Mid-Cap Index. Additionally, if the costs or the market capitalization
needs to be scaled over multiple years, the discount factors strongly influence the results.
Due to these two reasons, the predicted costs are relatively sensitive to capital input.
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Regarding the risk measure of the RCVaR, many assumptions needed to be taken to
develop the probability distribution. First of all, the assumptions of the Kolmogorov-
Smirnov test are partly relaxed to conduct the test on discrete data. Additionally, it is
assumed that all companies in the Accenture data can be treated as a single entity and
have cost behavior similar to SMEs. While evidence in the literature (cf. Section 4.3.2)
suggests that some of these assumptions may be relaxed, it is essential to keep them in
mind when analyzing the risk output. Lastly, it is assumed that risk stays the same over
time and in different business configurations. This assumption is certainly not valid [78]
but was necessary due to limited data about the influence of business characteristics on
variance over time. However, future work can provide more insights with the help of
the Federated Learning (FL) approach investigated in this thesis (cf. Section 6.1). The
complete list of assumptions for each chapter can be found in Appendix B.
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Chapter 6

Summary and Conclusions

Cyber security is a critical concern for businesses due to the potential costs associated
with attacks. In order to determine appropriate levels of investment in cyber security
systems, it is necessary to consider the trade-off between the potential costs of a cyber
attack, its risks, and the cost of security measures. This thesis proposes the Real Cyber
Value at Risk (RCVaR) as a solution to address this issue.

The RCVaR addresses three issues in the field of cyber security economics. First, it pro-
vides a model for estimating the potential costs based only on quantitative data from the
industry. It further offers more customization options than current solutions offered by
the United Kingdom’s National Cyber Security Center or Italy’s Cyber Security Osser-
vatorio. Moreover, the model is specifically tailored for use by SMEs. Through a simple
web interface with extensive documentation, firms can access the proposed model and
estimate the potential loss due to cyber attacks without requiring specialized knowledge
in cyber security or informatics. This is particularly beneficial for SMEs, which often
lack in-house computer specialists. The output provided by the model reflects the yearly
instead of per-incident costs, allowing firms to consider these costs in their yearly invest-
ment planning. Unlike most reports and frameworks, the model covers all attack vectors
and includes estimates of complex long-term costs, such as reputation damage or increased
cost of capital. Additionally, the model allows reviewing past estimations as well as future
predictions up to the year 2025.

Evaluating the cost estimation model on “unseen” work from industry and academic re-
search suggests that the estimates are accurate. For example, the model accurately pre-
dicts the costs for an average US-based retail company in 2021 at $ 420’444, deviating
by only 2% from the estimate produced by Woods et al. [158] using insurance premiums
from 26 insurance companies. In another case, the RCVaR could approximate the costs
reported in Kaspersky’s 2013 cyber cost survey [72] with relatively little information. Be-
sides that, the thesis demonstrates qualitatively that the cost behaviors of Accenture’s
[2, 3, 10], IBM’s [27], and Ponemon’s [126, 127, 128, 129, 130, 139, 85] industry reports
are incorporated successfully in the model. In addition to providing an expected cost es-
timate, the web application also provides insights into which business characteristics have
the most significant impact on potential costs. Together with the most effective security

85



86 CHAPTER 6. SUMMARY AND CONCLUSIONS

measure stated as an output, the company can start the investment process to decrease
its costs.

The second contribution of this thesis is an individually interpretable, numerical risk
measure. While current literature [49, 83] in the field has failed to provide organizations
with a comprehensive, cross-domain risk measure that takes individual risk perceptions
into account, the World Economic Forum proposed the Cyber Value at Risk (CVaR)
measure in 2015. The first fully-developed model was presented in the scope of research at
a study in Oxford [37] in the year 2021. However, previous studies on CVaR have relied on
simulations based on threat and harm probability estimates. Therefore, new approaches
are needed to empirically model the attack loss distribution, as related literature suggests
[119]. Consequently, this thesis advances the work on the CVaR by developing a measure
derived entirely from real-world empirical data and does not require probability estimates.
This risk measure is easily accessible through the web interface, along with extensive
documentation on the CVaR measure. A significant benefit of using the CVaR is that
firms can compare cyber risk with risks of other domains, such as operational or financial
risk, where the VaR is already used. By considering the expected cost and risk of cyber
attacks, as well as the cost of security investments, companies can optimize their overall
risk profile based on empirical performance indicators.

The CVaR measure established in this thesis was evaluated against the CVaR measure
currently employed by the consulting firm MARSH [93]. Comparing the cost distribution
shows that both distributions are very similar. Further examination of the limited litera-
ture [78, 158, 37] about attack cost distributions confirms the derived distribution in this
thesis and consequently validates the CVaR risk measure.

The third contribution of this thesis addresses the prevalent lack of data in the field
of cyber security economics. Most companies are hesitant to share information about
cyber incidents for fear of additional costs [17, 101]. This thesis proposes a Federated
Learning neural network, which allows firms to share their findings about cyber costs while
maintaining their privacy. Evaluation of the FL model against a “centralized” learned
model shows that the performance is comparable, even when some input features only
appeared in a single client. Overall, a model which achieves an Absolute Percentage
Error of less than 10% for more than 85% of observations was developed. Preliminary
experiments in this thesis’s scope further indicate that with more semi-synthetic data,
even better results can be achieved.

All three contributions show promising results and can provide fundamental information
to the management of a company in the budget or risk planning process. The expected cost
and risk of cyber attacks can be easily estimated without specialized knowledge, enabling
informed discussions and recommendations for improving security most efficiently, based
on quantitative data. Furthermore, Federated Learning provides a solution to extend the
empirical basis to improve results in the future even further.
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6.1 Future Work

As data scarcity is the most prevalent issue in cyber security economics, future work could
deploy the Federated Learning process developed in the scope of this thesis. Results from
a model in the production stage would allow the generation of synthetic data which re-
sembles real-world circumstances more closely. It would give further insights into research
fields that are currently covered insufficiently. Especially the cost distribution’s evolution
over time, different industries and countries is of enormous interest when conducting sta-
tistical cost predictions. Similarly, the results from the FL model could provide insights
into the correlation effects between the factors developed in this thesis. Utilizing this
information could lead to more accurate predictions in the future. Last but not least, this
thesis used the most significant 13 factors from current industry reports. However, IBM’s
report [27] displays additional factors, such as the deployment stage of security measures
and more detailed information on security systems. Incorporating this information might
make the Real Cyber Value at Risk more complex but also more accurate.
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Appendix A

Complete Evaluation Data

(a) Deviation in Test Sample
( < 5%, < 10%, > 10%)

(b) Predicted and True Cost
along Country Dimension

(c) Predicted and True Cost
along Industry Dimension

Figure A.1: Model 1 (FL/100’000 Observations/Random Split/40 epochs)

(a) Deviation in Test Sample
( < 5%, < 10%, > 10%)

(b) Predicted and True Cost
along Country Dimension

(c) Predicted and True Cost
along Industry Dimension

Figure A.2: Model 2 (FL/500’000 Observations/Random Split/40 epochs)
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(a) Deviation in Test Sample
( < 5%, < 10%, > 10%)

(b) Predicted and True Cost
along Country Dimension

(c) Predicted and True Cost
along Industry Dimension

Figure A.3: Model 3 (FL/100’000 Observations/Country Split/40 epochs)

(a) Deviation in Test Sample
( < 5%, < 10%, > 10%)

(b) Predicted and True Cost
along Country Dimension

(c) Predicted and True Cost
along Industry Dimension

Figure A.4: Model 4 (FL/100’000 Observations/Quintile Split/40 epochs)
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(a) Deviation in Test Sample
( < 5%, < 10%, > 10%)

(b) Predicted and True Cost
along Country Dimension

(c) Predicted and True Cost
along Industry Dimension

Figure A.5: Model 5 (Centralized ANN/100’000 Observations/No Split/40 epochs)

(a) Deviation in Test Sample
( < 5%, < 10%, > 10%)

(b) Predicted and True Cost
along Country Dimension

(c) Predicted and True Cost
along Industry Dimension

Figure A.6: Model 6 (Centralized ANN/100’000 Observations/No Split/50 epochs)
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(a) Deviation in Test Sample
( < 5%, < 10%, > 10%)

(b) Predicted and True Cost
along Country Dimension

(c) Predicted and True Cost
along Industry Dimension

Figure A.7: Model 7 (Centralized ANN/100’000 Observations/No Split/60 epochs)

(a) Deviation in Test Sample
( < 5%, < 10%, > 10%)

(b) Predicted and True Cost
along Country Dimension

(c) Predicted and True Cost
along Industry Dimension

Figure A.8: Model 8 (Centralized RF/100’000 Observations/No Split/ -)
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Model 2 21% 20% 27% 28% 22% 18% 11% 10% 0%
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Model 4 6% 3% 8% 9% 6% 6% 3% 4% 2%
Model 5 13% 13% 11% 15% 17% 14% 17% 14% 15%
Model 6 14% 14% 17% 16% 15% 15% 17% 18% 20%
Model 7 8% 15% 12% 12% 12% 10% 10% 10% 19%
Model 8 21% 24% 16% 19% 32% 39% 44% 45% 34%

Table A.1: Prediction Vs. True Cost Along Country Dimension
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Appendix B

Complete Limitation List

Assumptions

• Bias free dataset.

• The report from senior officials is a good representation of the reality.

• The currency exchange rates are not abnormal during conversion.

• The extracted data is representative of the distribution in Graphic
4.2.

• The average market cap of the Russell Mid Cap Index approximates
the average market cap of the companies in the data samples.

• The Costs of the “Vulnerable” category in the 2021 report [10] can be
reasonable approximated.

• Inflation is a reasonable discount factor for different assets across
various industries.

• Both regression approximate the annualized increase of cost, respec-
tively inflation, relatively well.

• Cross-Correlation between Factors is assumed to be zero.

• Parameter ratios are constant over time.

• The assumptions of the Kolmogorov-Smirnov test can be relaxed.

• Companies in the sample are similar.

• Distribution is the same over time and factors.

• Costs of SME have the same distribution.

• Venture Capital market capitalization approximates the valuation of
SME.



Appendix C

Documentation on Website

This chapter portrays the short Summary file accessible through the Documentation page
on the RCVaR website:
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This short documentation should help you understand how to interact with the RCVaR
interface and how to interpret the numbers in a meaningful way without requiring you to
read the whole thesis.

The RCVaR aims to provide you with three primary pieces of information.

1. What are my expected costs due to cyber attacks for a specific year?

Costs in the scope of the RCVaR include Indirect and Opportunity costs. For in-

stance, the RCVaR captures the potential revenue lost due to customers’ unwilling-

ness to use your services as a consequence of the decrease in trust. Another example

would be the increased lending costs or follow-up lawsuits.

2. What is the Cyber Value at Risk for a specific year?

The Cyber Value at Risk is a numerical risk measure that reflects the highest pos-

sible attack costs for a specific year with a certain confidence. In other words, with

a certain confidence, the costs for a year will not be higher than the Cyber Value at

Risk.

3. What are the most efficient actions to lower my expected cyber at-
tack cost for a specific year?

The output provides multiple insights into the composition of costs. It also shows
which business characteristics have a positive or a negative influence on the expected
costs. In addition, the RCVaR provides a security measure with the highest possible
chance of decreasing the cost for your firm.

The steps below give more detailed instructions on how to receive these three pieces of
information and how to interpret them.

1. First, you must navigate to the RCVaR web page by clicking on the RCVaR Symbol
in the header.

2. Upon navigating to the RCVaR web page, you see multiple different input fields. In
total, you can configure the output of the RCVaR by customizing over 14 different
characteristics. For all of them, a short description is available above the input field
itself. To evaluate your company’s expected cost, a minimum of three characteristics
must be specified. First, the year for which the expected loss should be computed
must be specified in the Year Input section. Next, the company valuation must be
provided to the interface in the Capital field. The valuation reflects the worth of the
company, more specifically, the equity value of the company. A good starting point
to elicit the company value is by taking a look at the tax-forms or the company’s
balance sheet. More advanced methods are Peer-Group comparisons or Discounted
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Cashflow methods. The capital must be specified for the current year. The last
mandatory input is the Confidence. The Confidence reflects how secure you want
to be regarding the CVaR value displayed in the end.

(a) Year Input (b) Capital Input

(c) Confidence Input

Figure C.1: Required Inputs

After providing all these inputs, additional information, such as the amount of re-
mote workers or the industry of the firm can be specified as well. This additional
information ultimately helps the RCVaR provide you with more accurate and cus-
tomized answers. It is therefore recommended to give as much input as possible.

3. Once the inputs are entered, you can click the Evaluate Impact button at the bottom.

4. The first two outputs show the influence of the characteristics on the average ex-
pected loss if only the mandatory inputs were provided. For instance, the chart in
Figure C.2b shows that not having insurance negatively impacts the expected costs,
meaning the loss increases without insurance. The percentage next to the cost-
influencing factor weights the factor so that the different factors can be compared.
Of all cost-decreasing factors, the retail sector has the most significant influence,
with 67.4%. Based on this information, you can reduce your company’s exposure to
negative factors and introduce more cost-decreasing factors.
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(a) Cost-Decreasing Factors (b) Cost-Increasing Factors

Figure C.2: How the Factors Influence the Cost

The subsequent output symbolizes how the costs are distributed among different
actions in a specific year. For instance, the chart in Figure C.3a indicates that
the biggest cost component in that particular year are lost business opportunities.
Figure C.3b shows a comparison of your company’s current security state against
the best and worst possible security state of your individual company. Hence, the
best possible security state (if all security-related actions are implemented) of your
personal company is the best possible state in this comparison.

(a) Cost Composition (b) Security Rating

Figure C.3: Cost Composition and Security Rating

When looking at the numerical outputs in Figure C.4, you can observe two estimates
for the expected costs for the specified year. One estimate was produced using a
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mathematical model, while the other value is based on an Artificial Neural Network.
Due to limited data during the development of this thesis, the mathematical model is
considered more accurate. Next, the security measure, which would have the highest
impact of decreasing the expected cost, is depicted together with the aforementioned
Cyber Value at Risk.

(a) Mathematical Model Predicted Cost (b) AI Expected Cost

(c) Security Recommendation (d) Cyber Value at Risk

Figure C.4: Numerical Outputs of the RCVaR

This summary hopefully helps you to better understand the Real Cyber Value at Risk
and improve your company’s cyber resilience. For a more detailed understanding, please
consider reading the thesis.
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Appendix D

Installation Guidelines

The code for this thesis is divided into two components. One component, which is referred
to as Research Code, is used to conduct statistical tests, generate graphs and data. The
other component is the code that is responsible for the website and is referred to as
Website Code. The Website Code consists again of two parts: Frontend and Backend.

The overall requirements to run either component are listed in Table D.1.

Model Version Downloads
Python 3.9.13 https://www.python.org/downloads/

Pip 22.0.4 https://pip.pypa.io/en/stable/installation/

Git 2.39.0 https://git-scm.com/download/win

Node.js 16.14.0 https://nodejs.org/en/download/

Table D.1: Technical Requirements to Run the Code

After Git is installed the repository can be cloned into the desired location with the
following command:

Command

git clone https://gitlab.com/FinanceLecture/cybervar.git

1. Research Code

To run the Research Code you have to navigate into the project and execute the file
Preparation/main.py :

Command

cd cybervar/Preparation
python main.py
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If the centralized machine learning part should be executed the file Preparation/-
model training/main model training.py needs to be run. To train the model with
Federated Learning, the file Preparation/model training/federated learning/FL main.py
needs to be executed.

Command

cd cybervar
python -m Preparation.model training.main model training

OR

cd cybervar
python -m Preparation.model training.federated learning.FL main

Before running any file from the Research Code, the modules in Table D.2 need to
be installed.

Model Version Command
NumPy 1.23.2 pip install numpy
OpenCV 4.6.0 pip install opencv-python
PiWin32 302 pip install pypiwin32
SciPy 1.9.1 pip install scipy
Pandas 1.2.4 pip install pandas
Statsmodels 0.13.2 pip install statsmodels
Matplotlib 3.5.3 pip install matplotlib
Seaborn 0.11.2 pip install seaborn
OpenPyXl 3.0.9 pip install openpyxl
Sklearn 1.1.2 pip install scikit-learn
TensorFlow 2.10.0 pip install tensorflow
Flower 1.0.0 pip install flwr

Table D.2: Technical Requirements to Run the Code

During the execution of the Preparation/main.py file, graphs will be generated au-
tomatically. The program will continue the execution once the graphs are closed.
Moreover, the program is interrupted by one input request and only continues after
an input is provided. If the current data should not be changed enter: No or N.

If the Research Code is executed in an editor such as PyCharm, one has to make
sure that the Working Directory is set to the root project folder (cybervar) for the
execution of the machine learning files.

2. Website Code

To run only the Website Code, one has to navigate to cybervar/Website/RCVAR
and install the libaries required for the Backend listed in Table D.3. Afterwards,
the Backend can be run with the following command:
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Command

cd cybervar/Website/RCVAR
python run rcvar.py

Model Version Command
PyYaml 6.0 pip install pyyaml
TensorFlow 2.10.0 pip install tensorflow
Flask-Cors 3.0.10 pip install flask-cors
Flask-SocketIO 5.3.1 pip install Flask-SocketIO
Pandas 1.5.1 pip install pandas
Matplotlib 3.5.3 pip install matplotlib
SciPy 1.9.1 pip install scipy
Sklearn 1.1.2 pip install scikit-learn

Table D.3: Technical Requirements to Run the Code

Once the Backend is running, the Frontend, for which Node.js must be installed
first, can be started. The following commands navigate to the Frontend folder, then
install the necessary packages and start the program in the end.

Command

cd cybervar/Website/RCVAR Frontend/rcvar
npm install - -force
npm start

The installation process was tested on both Windows and Linux. Thus, should also be
applicable for MAC OS. The Tables D.3 and D.2 list all necessary packages which have
to be installed via Pip-command. Nevertheless, it is possible that the user must install
additional dependency packages.
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Appendix E

GitLab

Both the Research Code and theWebsite Code are available on GitLab under the following
link:

https://gitlab.com/FinanceLecture/cybervar
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