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a b s t r a c t

In this study we develop an analytic model for information security investment allocation of a fixed

budget. Our model considers concurrent heterogeneous attacks with distinct characteristics and derives

the breach probability functions based on the theory of scale-free networks. The relationships among

the major variables, such as network exposure, potential loss due to a security breach, investment

effectiveness, and security investment levels, are investigated via analytical and numerical analyses

subject to various boundary conditions. In particular, our model shows how a firm should allocate its

limited information security budget to defend against two classes of security attacks (targeted and

opportunistic) concurrently. Among the results of these analyses, we find that a firm with a limited

security budget is better off allocating most or all of the investment to measures against one of the

classes of attack. Further, we find that managers should focus the security investment on preventing

targeted attacks when the information systems are highly connected and relatively open and when the

potential loss is large relative to the security budget.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the era of commoditization of information technology (IT)
and globalization of the world economy, it is argued that the most
challenging aspect of managing today’s networked organizations
is not so much about using IT to create competitive advantages in
the marketplace but about managing the potential risks created
by IT (Alter and Sherer, 2004; Carr, 2003; Goel and Chen, 2008).
Among the risks, security breaches of the corporate information
systems are perhaps the most prominent and visible, as evidenced
by the headlines of mass media in recent years. It is estimated
that the total cost to a company of recovering from a single
data breach could exceed $6 million (Ponemon Institute, 2009),
and that these breaches have resulted in billions of dollars
of financial losses in the U.S. alone and possibly trillions world-
wide (Mercuri, 2003). The common (and seemingly rational)
reaction to this growing risk has been to increase spending on
information security technologies. However, it is also recognized
that complete information security at the corporate level is
virtually impossible without hindering the normal business
activities in today’s economy, where connectivity to external
business partners and customers is essential (Bellovin, 2001,
ll rights reserved.
Kumar et al., 2000). As a result, some recent studies have focused
on the determination of return on security investments (Arora
et al., 2004, Cavusoglu et al., 2004) and the economics of security
investment under different attack scenarios (Gordon and Loeb,
2002; Huang et al., 2008a) to provide guidance to firms on
optimizing security investment given the unattainable state of
complete security.

Prior studies on information security investments give insight into
optimizing investments based on system parameters, attack condi-
tions, and investment return, with two key assumptions: (1) Firms
defend against separate and individual attacks one at a time and (2)
Firms invest in security solely based on optimization without budget
limitation. In reality, firms often face various types of security
challenges concurrently, each with different attack characteristics
and requiring different defense mechanisms. Additionally, a firm’s
ability to invest in information security, or everything else for that
matter, is limited by its finances. In particular, information security
has to compete with other projects for funding, and its share of the
total IT budget has trended downwards recently (Karr, 2006). Given
the multitude of concurrent heterogeneous attacks and budget
limitations, the greater challenge to managing information security
investment is not so much the total investment level needed, but the
allocation of the finite resources to defend against different classes
of attacks.

In order to produce relevant results, this study aims to close the
research gaps described above by adopting a more practical set
of assumptions. To do so, we examine the allocation of security
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investment to defend against concurrent heterogeneous attacks on a
firm’s information system. We also take a firm’s ability to invest into
consideration in the form of budget constraints. Further, we derive
breach probabilities for different classes of attacks based on the
concept of scale-free networks, a theoretically robust and empirically
validated framework (Albert et al., 1999, 2000; Barabási and Albert,
1999). Our analysis produces the following interesting findings:
(1) when a firm has limited security budget (relative to the potential
loss), it should concentrate its security investment on defending
against one class of attacks, even if the threats from other classes of
attacks exist; (2) when its information systems have high connectiv-
ity to the outside world, a firm is better off allocating more of its
security budget towards targeted attacks than opportunistic attacks;
and (3) when investments have cross-over effects on other classes of
security attacks, security measures with higher impact on other
attacks should receive higher allocation, regardless of systems char-
acteristics and attack conditions. Detailed derivations and discussions
of these findings can be found in later sections.

The rest of the paper is arranged as follows. We first review the
literature on economics of information security that addresses
optimal resource allocation problems and the theoretical frame-
works for modeling complex networks. Based on this review, we
proceed to set up the basic analytic framework for this study and
derive the fundamental conditions for optimal resources alloca-
tion under generic attack and budgetary scenarios. This is fol-
lowed by in-depth analyses of optimal allocation under a number
of specific attack and budgetary conditions. Simulation results are
provided to validate some of the conditions and findings. Finally,
we discuss the theoretical and practical implications of our
analytical findings and explore future research possibilities and
directions.
2. Research background

2.1. Classification of security attacks

Companies face many different types of information security
attacks on a daily basis. CSI 2008 report, for instance, lists no few
than 20 (Richardson, 2009). These attacks can be categorized in
many ways based on factors such as system vulnerability, point of
initiation, attack technique, and resulting loss. In this study, we
adopt the classification of attacks based on attackers’ intention
and concentration to classify them into two classes (Casey, 2003;
Dhanjani, 2009; Collins et al., 2006; Mirkovic and Reiher, 2004;
Poff, 2009): opportunistic and targeted. Opportunistic attacks are
not directed at any particular information systems; instead, they
are created and released by attackers to look for and infect,
opportunistically, any reachable and accessible information sys-
tems via a network. Virus, worm, spyware, phishing, and spam
e-mail are common examples of opportunistic attacks. By nature,
they are massive and frequent, and firms encounter them on a
daily basis. Further, the probability of such attacks overwhelms
other types of security incidents, although their consequences
(or potential losses) are often limited (CERT, 2007; Verizon, 2011).
The other class is targeted attacks, which are directed at specific
information systems to steal data, inflict damages, or both. Denial
of service, website defacement, or a purposeful penetration into a
bank’s systems to transfer large amount of money by hackers are
examples of targeted attacks. Such attacks may be less frequent
than opportunistic attacks, but they tend to cause much larger
damages to the targeted firms—per-respondent loss from ‘‘theft
of proprietary information’’ is three times that from virus,
according to the 2008 CSI survey (Richardson, 2009).

Both classes of attacks often threaten an information system
concurrently: A firm, while under constant virus and ping-of-death
attacks, can at the same time be a target of hackers to steal
confidential data. Further, the techniques to defend against different
attacks can be different. For instance, anti-virus, anti-spyware, vulner-
ability patch management, web/URL filtering are typical techniques
against opportunistic attacks, while application-level firewall, data
loss prevention and monitoring, forensic tools, intrusion detection
systems, and so on are directed at targeted attacks. (Some security
measures, such as firewall and encryption, are useful to defend
against both classes.) Therefore, to protect its information system, a
firm needs to invest in and operate, concurrently, information
security measures to fend off heterogeneous attacks. Without budget
limitations, a firm would invest whatever is needed to defend itself
against the different classes of attacks. In the real world, such a
scenario is not realistic, given the fact that no companies have
unlimited financial resources. A more common approach, therefore,
is budgetary: A firm assigns a certain information security budget, the
amount of which may be dependent on such factors as the industry
type, the attack environment, firm’s own financial situation, and so
on. The decision then becomes the optimal allocation of the budget
to most effectively protect the firm’s information resources. In this
paper, we examine the optimal allocation of a fixed security budget to
defending against these two different classes of attacks.

2.2. Economics of information security investments

Recent research in the area of the economics of information
security investment generally falls into two streams, and both are
in their early stage of development. Table 1 summarizes the
assumptions and results of prior research. One stream focuses on
investment decision based on the actions and reactions made
between a firm trying to protect its information assets and
attackers intending to access or damage the proprietary informa-
tion, with the help of game theory (Cavusoglu and Raghunathan,
2004; Cavusoglu et al., 2004, 2005). From the methodological
perspective, game theory approach is best suited for modeling the
outcome of a specific security technology with limited rounds
(often two or three) of actions and reactions between a limited
number of players (often the firm and the attacker). However, to
be useful, such an application requires estimating the attacker’s
utility parameters, which is a much more difficult task than
estimating those of the targeted firm. This difficulty in determin-
ing attacker’s utility parameters may partially explain why game
theory has not been extensive adopted by researchers in this field.

The other research stream analyzes the economics of informa-
tion security with traditional decision analysis and expected
utility theory. This approach, widely adopted for evaluating IT
investments, examines the risk and return of information security
investment in a specific period of decision making and outcomes.
Unlike most other IT projects, the ‘‘return’’ of security investment
does not come from increased revenues or decreased costs like
other IT investments do, but from reduced security risks that a
firm is facing (Alter and Sherer, 2004). To account for this risk
economics, Schechter (2005) proposes an econometric model, in
which risk is evaluated as security risk¼(likelihood of loss
event)n(cost of loss event). In their seminal article, Gordon and
Loeb (2002) adopt the decision analysis approach and risk
economics to analyze the optimal level of investment in informa-
tion security by a firm. Ensuing studies (Cremonini and Nizovtsev,
2006; Hauske, 2006; Huang et al., 2008a; Ogut et al., 2005) relax
restrictive assumptions made by Gordon and Loeb to both extend
and modify their findings. When there is more than one technol-
ogy, bypass rates – defined as the probability that an attack would
breach a particular security technology – can be combined and
compared for the purpose of evaluating the effect of risk reduc-
tion of each security investment (Arora et al., 2004). These studies
are outlined in Table 1.



Table 1
Summary of prior studies on information security investment.

Study Base Theory Assumption Finding

Attacka Budget Interconnection Risk

Profile

Gordon and

Loeb

(2002)

Economic

benefit

maximization

Hypothesized attacks1 and

functions2; one-at-a-time3

Unlimited Not specified Risk

neutral

� Optimal investment does not always increase with system

vulnerability

� Optimal security investment should be less than 36.8% of

potential loss

Arora et al.

(2004)

Risk-based

return

Not specified Unlimited Not specified Risk

neutral

� Return on security investment can be measured with the

residual risks, based on the product of attack bypass rate of

individual security system

Cavusoglu

et al.

(2005)

Game theory Targeted (implied)1 N/A Not specified Risk

neutral

� IDS creates positive value for the deploying firms if and only if

the detection rate is greater than a critical value

� Firms realize strictly non-negative value in optimally configured

IDS

Ogut et al.

(2005)

Expected

utility theory

Not specified Unlimited Random Risk

averse

� Interdependence of security risk reduces firms’ incentive to

invest

� Interconnected firms with liability tend to over-invest in

security

Cremonini

and

Nizovtsev

(2006)

Economic

benefit

maximization

Targeted (implied)1 Unlimited Not specified Risk

neutral

� Attackers tend to choose weak targets among heterogeneous

systems when their security measures are known

� Systems with better level of protection have stronger incentive

to reveal their security characteristics

Hauske

(2006)

Economic

benefit

maximization

Hypothesized attacks1 and

functions2; one-at-a-time3

Unlimited Not specified Risk

neutral

� Upper limit of optimal security investment [] is not applicable

when the boundary conditions of breach functions are relaxed

Huang et al.

(2008a)

Expected

utility theory

Hypothesized attacks1 and

functions2; one-at-a-time

attack3

Unlimited Not specified Risk

averse

� There exists a minimal potential loss for non-zero security

investment

� Decision makers that are more averse to risks do not always

invest more in security

a Nature of attack: (1) Attack type—opportunistic or targeted; (2) formulation of breach function—hypothesized or derived; (3) attack sequence—one-at-a-time or

concurrent heterogeneous.
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Our review of the literature shows that prior studies have
focused on optimizing the total investment in information secur-
ity and assumed that attacks happen individually and one at a
time. In reality, firms face heterogeneous attacks concurrently
and have to defend against them within budget constraints. Also,
the breach probabilities used in these studies are either hypothe-
sized or not specified. We intend to address these research gaps
by developing a model to consider the optimal allocation of
security budget when a firm faces concurrent heterogeneous
attacks based on an established network theory.
2.3. Network characteristics for information security

We regard a firm’s information system, our unit of analysis, as
the whole corporate network, which physically interconnects
with other systems via external network connections. Because a
firm’s information system receives attacks via these external
connections, an understanding of the network properties is ess-
ential to study the information security characteristics. The
information system can connect to external networks via single
– a proxy server, for instance – or multiple connections, and such
connections can be simple (such as a connection to an Internet
Service Provider) or open and deep (such as a joint design
network that links member companies’ product development
databases to each other). The network exposure c represents the
connectedness of the firm’s information systems: The more
connections an information system has and the more open the
connections are, the higher the network exposure. It is intrinsic to
an information system’s accessibility and connectivity but is
independent of its security setup. All security measures, such as
password protection or choice and configuration of programs, is
part of the firm’s security investment S (to be defined in Section 3)
on top of the given network exposure. So, for instance, the firm in
question may choose to allow its vendors to access certain areas
of its information systems, a decision which may facilitate its
business operations but would increase the network exposure.
As this example shows, network exposure is determined by not only
the technology choices but also the firm’s business requirements.

Network topology is another key characteristic in the study of
information security. In 1999, physicist Barabási and colleagues
discover that, although the majority of the nodes have only
limited number of links, a few of the nodes (called ‘‘hubs’’) in
the Worldwide Web have large number of connections. Such a
topology, which they termed ‘‘scale-free network,’’ follows a
power law in the distribution of nodal connectedness: The
probability that a node connects with k other nodes is roughly
proportional to k�g, where g is between 2 and 3 for most
networks (Albert et al., 1999; Barabási and Albert, 1999). This is
in contrast to the commonly believed random network topology,
where the connectivity of any node in the network follows a
random pattern or even distribution, and where new nodes are
added to the existing network randomly. Since then, researchers
have found that, in addition to the large scale interconnection of
computer networks, many diverse types of networks, from
Hollywood actors to sexual relationships to cellular metabolism,
exhibit the characteristics of scale-free network. For instance,
Wal-Mart’s RetailLink system directly links its own system with
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thousands of its suppliers’, which, in turn, connect to other
retailers or supply chain vendors, forming a large web of informa-
tion systems consisting of mostly limited-connected nodes
(the suppliers’ systems) with a few hubs (that belong to Wal-
Mart and other large retailers). Recent critics have argued that the
physical structure of the Internet, with its router-based architec-
ture, may not follow the power law of connectedness (Alderson
et al., 2005; Wallinger et al., 2000). However, it has been
theoretically and empirically shown that the interconnection of
corporate information systems, logically resembling the topology
of Worldwide Web or P2P networks regardless of the physical
connections, can be best explained with scale-free network
(Anderson and Moore, 2006; Faloutsos et al., 1999; Kumar et al.,
2000; Nagaraja and Anderson, 2005; Watts and Strogatz, 1998).
Therefore, we adopt the scale-free network theory in this study as
a foundation for building our analytical models.
3. Model formulation

We consider a two-stage, single-period, multi-event model for
information system security of a firm. (In the context of this
study, a ‘‘period’’ is equivalent to a budget cycle of the firm in
question.) Fig. 1 shows a conceptual description of the model.
Security adversaries generate attacks on the firm’s information
systems with an attack probability x, defined as the likelihood of
c, S L��

AtAgents (Damage)

BreachAttacks

Threat BusinessInformation
Systems

Fig. 1. Information security model.

Table 2
Summary of Variables and Functions.

Notation Name Definition

c Network exposure Connectedness of an information system;

normalized to [0,1]

xi Attack probability

of class i

Likelihood that an information system receives class

i attack; xiA[0,1]

Si Security

investment of class

i

Firm’s investment made to protect against class i

attack; SiA[0, Li)

ri Breach probability

of class i

Probability that a security breach can occur due to

class i attack; ri(xi,c,Si)A[0,1]

Li Potential loss of

class i

Potential economic loss caused by a security breach

from attack class i; LiA[0, N)

zi Security risk of

class i

Security risk a form faces due to attack class i;

zi¼riLi

ki Normalization

parameter for Si

Measuring the (relative) effectiveness of class i

security investment; kiA[0,1]

Z Total security risks
Z ¼

Pn
i ¼ 1

zi

S Total security

investments
S¼

Pn
i ¼ 1

Si

F Total benefit

function
F¼

Pn
i ¼ 1

ðDzi�SiÞ

mij Cross-over

coefficient

Effect of security investment in the Class j attack on

Class i attack; mijA[0,1]
the information systems receive certain type of attacks within a
given period of time. The security property of the information
systems, in turn, is determined by their exposure to the network
and security investment to keep them safe. The network exposure
c, defined in Section 2.3, is intrinsic to the connectedness of the
firm’s information systems. To be successful, an attack has to
successfully penetrate the connections and breach the computers
or servers internal to the corporate network where the targeted
information resides. To protect against such attacks on the
information systems with a given network exposure, the firm
invests S in various security measures. This investment can take
many forms, from technologies such as firewalls and anti-virus
software, to procedures such as auto log-off and password aging,
to policies such as user training and security audits. Table 2
summarizes the parameters and variables used in our model.

The breach probability r – probability of a security breach to
occur – can be considered as a function of the behavior of the
security adversaries, as described by the attack probability, and
the security property of the information systems, which, in our
model, is determined by the network exposure and investments
in security measures. In other words, this can be written as
r¼r(x,c,S). We observe that r exhibits certain properties and is
subject to boundary conditions. First, for any given system, the
higher the likelihood of attacks and the more exposed to attacks,
the higher the breach probability; that is, both @r=@xZ0 and
@r=@cZ0. Further, the effect of the security investment is to
reduce the breach probability, i.e., @r=@Sr0, governed by the law
of diminishing return, or @2r=@S2

Z0. (In making this assumption,
we preclude the case where security measures actually add
vulnerability to the system, a possible but rare and undesirable
case.) We also require the boundary condition that when the firm
does not make any security investment, the breach probability is
solely determined by and can be described as a product of the
attack probability and the network exposure of the systems:

r0 ¼ rðx,c,0Þ ¼ xc: ð1Þ
Key assumptions

� Intrinsic to information system’s connectedness, determined by firm’s

business requirements and technology implementation

� Independent of any security properties

� Exogenous to firm’s defensive activities

� Security investment will never exceed potential loss

� Initial security investment has to produce positive benefit

�

r0 ¼rðx,c,0Þ ¼ xc

� Potential loss is fixed for each class of attack

� mii¼1, 8i
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Without loss of generality, we can normalize c to 0rcr1.
Following the common definition of risk as the combination of the

likelihood and the consequence of a specified hazard being realized
(Behara and Bhattacharya, 2007; Khamooshi and Cioffi, 2009), the
security risk z a firm faces can be written as z¼rL, where L is
potential economic (i.e., monetary) loss caused by a security breach
(Schechter, 2005). This loss can be the direct – for instance, stolen
product information – or indirect – for instance, customer losing trust
of a company that could not safeguard credit card data – result of
security breach of a particular type of attack. For our model, L40 is a
fixed amount, as estimated by the firm based on the type of attack.
We further assume that L can be very large but always remains finite;
that is, our model does not cover the case of potential losses at a
catastrophic level. In the case of n classes of heterogeneous attacks
concurrently

zi ¼ riLi 8iA ½1,n� \ I, ð2Þ

where ri¼ri(xi,c,Si), and Li represents the potential loss the firm faces
when the ith type of attack penetrates the systems. We assume that
the network exposure c is the same for all classes, because it is
intrinsic to the systems being attacked and is independent of the
security measures. We further assume that SioLi for all i classes,
because it makes no sense for a firm to spend as much on security as
the potential loss. So in the case of a firm facing n types of attacks, the
total information security risk can be expressed as

Z ¼
Xn

i ¼ 1

zi ¼
Xn

i ¼ 1

riðxi,c,SiÞLi: ð3Þ

To protect against the ith type of attack, the firm makes
investment Si to reduce the breach probability ri, reducing the
information security risks that the firm faces by

Dzi ¼ ðr0
i �riÞLi ¼ ðxic�riÞLi: ð4Þ

(By assigning a security investment to each type of attack, we
assume that the firm invests in security measures with distinctive
attacks in mind. This assumption, however, does not preclude
effects that one type of investment has on another type of attack.
We discuss both independent and interacting security invest-
ments in Sections 4 and 5, respectively.) If the firm repeats the
same process for all n classes of attacks, then the net benefit F of
all the security investments of Si, i¼1,y,n, can be expressed as

FðS1,. . .,SnÞ ¼
Xn

i ¼ 1

ðDzi�SiÞ ¼
Xn

i ¼ 1

ðxic�riÞLi�
Xn

i ¼ 1

Si: ð5Þ

In practice, a firm must see a need or a positive return for it to
make any initial security investment. In other words, the first
dollar of security investment has to generate benefits for the firm;
otherwise, it would not invest in security at all (Gordon and Loeb,
2002). This leads to the boundary (initial) condition the marginal
net benefit of any security investment Si at Si¼0 is non-negative,
which can be written as

@F
@Si
ðS1,. . .,Si ¼ 0,::,SnÞZ0 8i¼ 1,. . .,n: ð6Þ

The task of optimizing the security investments is to maximize
their benefits F, which is performed by setting the first-order
partial differentiation of F(S1,y,Sn) in (6) with respect to each Si;
that is, @F=@Si ¼ 0: We note that this operation indeed yields
maximum, not minimum, of F, because @2F=@S2

i ¼ ð�@
2r= @S2

i Þ

Lir0, where @2r=@Si
2
Z0, 8i.

In the case of n¼2, or two concurrent heterogeneous attacks,
(5) becomes

FðS1,S2Þ ¼ ðx1c�r1ÞL1þðx2c�r2ÞL2�ðS1þS2Þ: ð7Þ

Following the discussion in Section 2.1, we consider the two
common classes of attacks, namely targeted (class 1) and
opportunistic (class 2), for this study. S1 and S2 are investments
against targeted and opportunistic attacks, respectively. To find
r1 (for targeted attacks) and r2 (for opportunistic attacks) as
representative of reality as possible, we adopt the approach of
mathematical derivations based on practically validated a priory
principles. As discussed in Section 2.3, scale-free network has
been theoretically and empirically validated as the framework
that represents the topology of the Internet connections regard-
less of physical devices (Anderson and Moore, 2006; Faloutsos
et al., 1999; Kumar et al., 2000; Nagaraja and Anderson, 2005;
Watts and Strogatz, 1998) and is thus adopted as the guiding
theory for this study. We posit that, in such a network, targeted
attacks share the similar characteristics of a one-to-one attack
against a particular node, and that the propagation of opportu-
nistic attacks is analogous to the epidemic spreading
among nodes.

We first examine the epidemic dynamics of a scale-free net-
work, a subject that has been extensively studied in various
disciplines from biology to computer science for cases such as a
virus on the Internet, a sexually transmitted disease among
people, or even ill-intentioned rumors within a professional
community (Griffin and Brooks, 2006; Gross et al., 2006; Lai
et al., 2003; Telo da Gama and Nunes, 2006; Watts, 1999; Zhou
et al., 2006). It has been shown that, in the steady state, when an
epidemic spreads in the scale-free network, the infection prob-
ability of an average node is a function of the infection rate,
exposure to the broad network, and attack rate. Assume that the
effect of security investment S in protecting the information
systems against the potential breach can be represented as the
reduction of the infection rate, the breach probability of oppor-
tunistic attack can then be expressed as (see Technical Appendix
A.1 for detailed derivation)

r2 ¼ x2ck2S2þ1, ð8Þ

where x2 is the attack probability for opportunistic attacks, and
k2, a normalized parameter (0rk2r1), measures the impact of
investment S2.

In the case of a one-to-one, targeted attack on a particular
node, from the attacker’s perspective, the scale-free network
effectively collapses into a regular randomly connected network,
because the actual attack has to come through from a connected
node regardless of the topology of the overall network. In such a
random network, the network exposure c – the level of exposure
of the firm’s system to other nodes in the network – can be
interpreted as the probability that an attacker would successfully
identify a connecting node among all available nodes in the
network to initiate such an attack, and the infection rate repre-
sents probability of such an attack (or ‘‘infection’’) being success-
ful. Therefore, the breach probability in this case becomes product
of the attack probability – the tendency for the attackers to
attack, network exposure – probability of randomly selecting a
connected node, and the infection rate (defined in (T6) of
Technical Appendix A.1)

r1 ¼
x1c

k1S1þ1
, ð9Þ

where x1 is the attack probability for targeted attacks, and k1 is a
normalized parameter for S1 (as defined above).

A quick comparison between r1 and r2 reveals their different
characteristics. r2 is much more convex with respect to S than r1;
in practice, it means that an initial (or a small amount of)
investment in security is likely to have a more significant impact
against opportunistic attacks than against targeted attacks. This
seems to fit well with practice, because it is often more difficult
and costly to block targeted attacks than to block random ones.
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The associated potential losses of the two classes are L1 and L2.
Substituting (8) and (9) into (7) and rearranging the terms, we
have the total net benefit F:

FðS1,S2Þ ¼
x1ck1S1L1

k1S1þ1
þx2cð1�ck2S2 ÞL2�ðS1þS2Þ: ð10Þ

Maximizing Eq. (10) then yields the optimal security invest-
ment allocation to defend against both classes of attacks.
100%
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Fig. 2. Optimal information security investment allocated to SI vs. c, independent

investments with budget constraint.
4. Optimal allocation of information security investment

When a firm has set the total information security budget
to a fixed amount S, this budget is to be allocated to defending
against targeted (Class 1) and opportunistic (Class 2) attacks, that
is, S1þS2¼S. Because S2¼S�S1, we can rewrite r2 in (8) as a
function of S1:

r2ðS1Þ ¼ x2ck2ðS�S1Þþ1 ¼ x2ck2Sþ1c�k2S1 : ð11Þ

Substituting S1þS2¼S, (8), and (11) into (7), we get

FðS1Þ ¼
x1ck1S1L1

k1S1þ1
þx2cð1�ck2S�k2S1 ÞL2�S: ð12Þ

Differentiating F(S1) with respect to S1, we get

@F
@S1

����
S,L1 ,L2 ,c,x1 ,x2

¼�
@r1

@S1
L1�

@r2

@S1
L2 ¼

x1k1cL1

ðk1S1þ1Þ2

þx2k2ln cL2ck2Sþ1c�k2S1 : ð13Þ

The boundary condition (6) requires that (13) is equal to or
greater than zero when S1¼0. After rearranging terms, we get

�
L2

L1

k2

k1

x2

x1
ðln cÞck2Sr1: ð14Þ

This leads to the following (see Technical Appendix A.2 for
proof):

Lemma 1. In the case of independent investments to counter the attacks

as described by the two breach probability functions (8) and (9), the total

budget constraint has a lower bound S0 ¼ ð1=k2 lncÞ ln �ðL1=L2Þ
�

ðk1=k2Þðx1=x2Þð1=ln cÞÞ when coc0 ¼ e�ðL1=L2Þðk1=k2Þðx1=x2Þ.

Lemma 1 states that when the network exposure c of the firm’s
information system is sufficiently small (coc0), for the security
investment to make a difference in reducing the security risks, the
total information security budget S has to be higher than a
minimum S0. However, when the network exposure is large
(c4c0), there is no minimum level of investment S0. This is likely
because when the network is widely exposed, any amount of
investment will help reduce the security risks.

To find the optimal investment S1
n (and S2

n is therefore deter-
mined), we set (13) to zero. After rearranging terms, we get the
following equation:

ck2Sn

1

ðk1Sn

1þ1Þ2
¼�

L2

L1

k2

k1

x2

x1
ðln cÞck2S: ð15Þ

We first observe that (15) indeed yields the maximum of F(S1),
because @2F=@S2

1 ¼�ð@
2r1=@S1

2
ÞL1�ð@

2r2=@S1
2
ÞL2r0, where

ð@2r1=@S1
2
ÞZ0 and ð@2r2=@S1

2
ÞZ0. We also note that the bound-

ary condition (14) holds for (15), because the left-hand side of
(15) is always smaller than or equal to 1: ck2S1

n

r1 (since cA[0, 1])
and ðk1Sn

1þ1Þ2Z1, for all S1
n40.

Using this optimization condition, we examine the optimal
investment level S1

n and how the firm should allocate security
investments given a budgetary constraint, as represented by S1

n/S
with respect to four sets of parameters of interest, namely the
total security budget S, the network exposure c, ratio of invest-
ment effectiveness k1 and k2, and the ratio of potential loss L1 and
L2 (The ratio of x1 and x2 would have the same effect on S1
n/S as

that of the ratio of L1 and L2, as evidenced by (15)). Because no
closed-form solution from (15) is possible, we adopt the implicit
function analysis; specifically, when y¼y(x) and F(x,y)¼0, we
have

dy

dx
¼�

@F=@x

@F=@y
: ð16Þ

In our case, we let, from (15)

F ¼
ck2S1

n

ðk1Sn

1þ1Þ2
þ

L2

L1

k2

k1

x2

x1
ðlncÞck2S ¼ 0: ð17Þ

By setting y¼S1
n and x as each of the four sets of parameters

alternately in (16), we can examine the behavior of the optimal
investment S1

n and the optimal investment allocation to Class
1 attack S1

n/S (and allocation to Class 2 attack, S2
n/S, is thus

determined). We use numerical analysis to compute and graph
the effects of these parameters on the optimal allocation under
different scenarios.

4.1. Network exposure and security investment

We first examine how S1
n/S varies with c, the system’s network

exposure. By setting y¼S1
n and x¼c in (16), we arrive at the

following proposition (see Technical Appendix A.3 for proof):

Proposition 1. There exists cA[0, e�ð1=k2Þ), where both @Sn

1=@cZ0
and @ðSn

1=SÞ=@cZ0 , for all cZc.

Proposition 1 states that when the network exposure c is
larger than a minimum c, both the optimal investment S1

n and the
optimal allocation to Class 1 attack S1

n/S increases with c (with the
latter also implying that S2

n/S decreases with c). Since k2A[0,1], c

is always smaller than e�1
¼0.368 and approaches 0 when k2 is

small. Thus, this proposition states that for the bulk of the
network exposure value (crcr1), allocation to Class 1 attacks
increases with c, while allocation to Class 2 attacks decreases,
given a total budget S.

To show Proposition 1 numerically, we fix x1, x2, k1, k2, L1, L2,
and S, and run a series of c values to obtain the ratio S1

n/S. Fig. 2
shows the results of S1

n/S vs. c at different ratio of L1 and L2, while
fixing L1¼$2 M, k1¼k2¼0.000005, x2¼10x1, and S¼$100,000
(as 5% of L1). (The results are similar when we vary the values
of S, x1, and x2) We can see that, for each combination of L1 and L2,
S1
n/S increases with c between a minimum c where S1

n remains
zero and a maximum c where S1

n/S approaches 100%. Further, the
relative size of L1 vs. L2 shifts the curves to the left.

Proposition 1 and the computational result in Fig. 2 suggest that
opportunistic attacks should receive higher amount of investment
when the network exposure is small. This result can understood as
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follows: In a scale-free network, when a firm reduces its network
exposure, opportunistic attacks stay relatively constant, because they
depend more on the network behavior – in particular, the connectiv-
ity of the hubs – than individual firm’s connectivity, while targeted
attacks are likely to be reduced with the decreased interconnections.
Therefore, when c is small, it is more important for a firm to defend
against opportunistic attacks than targeted attacks. When the total
investment is fixed, the optimal allocation would shift gradually from
opportunistic to targeted attacks with increasing network exposure.
This result is consistent with the notion that when a firm’s system is
more connected and exposed, there are more ways for adversaries to
initiate targeted attacks, and higher amount of investment is required
to combat such attacks. Additionally, when targeted attack takes on
more importance (as represented by the relative size of L1 vs. L2), this
shift from opportunistic to targeted attacks happens at a lower c (thus
covering a broader range of network exposure). In practice, this result
implies that a firm should allocate large amount of its investment to
combat opportunistic attacks when the network exposure is low, and
increase the allocation to targeted attacks when the network expo-
sure increases. Further, with larger potential loss due to targeted vs.
opportunistic attacks, the range of network exposure where the
optimal investment allocated to the former is wider (i.e., starts at
smaller network exposure).
0.8
S=1%L1 S=5%L1 S=25%L1 S=80%L1

*/
S

4.2. Relative losses and security investment

In this section, we examine how S1
n/S varies with L1/L2. Using (16)

and setting y¼S1
n and x¼L1/L2, we have the following proposition

(See Technical Appendix A.4 for proof):

Proposition 2. Both the optimal investment S1
n and the optimal

allocation S1
n/S increase with the relative potential loss L1/L2.

Proposition 2 states that a firm should allocate more against
those attacks that cause higher potential losses. This is intuitive,
because such an action would likely result in higher level of risk
reduction. Fig. 3 shows the results of the computational analysis
of Proposition 2, where we set k1¼k2¼0.000005, c¼0.4,
L1¼$2 M, and x2¼10x1, while recording the relationship S1

n/S vs.
L1/L2 by varying L2 for multiple values of S as 1%, 5%, 25%, and 80%
of L1. (The results are similar when we vary the values of c, x1, and x2.)
For the curve with small S, S1

n starts to become non-zero and quickly
takes the entire budget S with increasing L1, while the curves of larger
S are smoother and over a larger range of L1/L2. In other words, the
allocation shift from investing against one class of attack to the other
occurs at a higher relative loss and increases faster when the total
budget is smaller.
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Fig. 3. Optimal information security investment allocated to SI vs. relative potential

loss L1/L2, independent investments with budget constraint.
4.3. Investment effectiveness and security investment

Next, we examine how the relative effectiveness of security
technology, represented by k1/k2, affects the allocation of invest-
ment. Because implicit function analysis with (16) and (17) is
impossible in this case – the occurrences of k1 and k2 cannot be
isolated as k1/k2 completely – we use numerical analysis to study
the relationship of S1

n/S and k1/k2. This is done by leaving all other
parameters (S, L1/L2, x1/x2, and c) constant while varying k1/k2.
Fig. 4 shows the result of one set of the calculation for L1¼$2 M,
L2¼$200,000, c¼0.4, x2¼10x1, and varying levels of S (as 1%, 5%,
25%, and 80% of L1). Initially, when k1/k2 is very small, investing
in measures against Class 1 attack is simply too ineffective,
resulting in a zero allocation to it. S1

n starts to become positive
after certain level of k1/k2; with increasing k1/k2, the optimal
allocation to S1

n increases to capture the increasing relative
effectiveness of investment in Class 1. Here, similar to the case
of S1

n/S vs. L1/L2 for the reason of investment efficiency, the
minimum level of k1/k2 for S1

n to become non-zero and the rate
of increase thereafter are higher for small S. As k1/k2 crosses
certain level, S1

n starts to decrease with increasing k1/k2, signaling
that the gain in increasing effectiveness has peaked. When this
happens, the optimal allocation starts to shift more towards
Class 2.

Above analysis suggests that when a firm invests a fixed
amount of budget against two concurrent attacks, investment
allocation to protecting against one class of attack increases with
the effectiveness of such an investment vs. that of the investment
in the other class. When the relative effectiveness reaches a
certain level, however, the allocation of investment starts to shift
towards the less effective class, because the investment in the
former is so effective that less allocation is needed to achieve
some required level of security against attacks of that class
(in agreement with the law of diminishing returns). It is also
interesting to note that for smaller total budgets, the peak
allocation for protecting against one class of attacks occurs at a
higher relative effectiveness and a greater share of total budget. In
the case where the total budget S is very small (such as the curve
of S¼1% L in Fig. 4), the allocation becomes extreme: The class
with higher level of effectiveness tends to get most or all of the
investment. This may seem counterintuitive, because the law of
diminishing returns implies that putting high amount of invest-
ment in one would produce less than investing at least some in
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Fig. 4. Optimal information security investment allocated to S1 vs. relative

effectiveness factor k1/k2, independent investments with budget constraint.
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each class. A reasonable explanation of this result is that for any
security measure for protecting against an attack class to be
effective, a minimum threshold (or some critical mass of invest-
ment) needs to be reached. (For instance, buying licenses for and
installing anti-virus programs on only a few computers among
the many systems a firm has will not protect the firm against
viruses.) Therefore, it is optimal to allocate most or all of the
budget to the class with higher relative effectiveness – which in
turn means lower investment threshold – when the budget
is small.
4.4. Budgetary constraint and security investment

Our last analysis is focused on the optimal allocation among S1
n

and S2
n at different levels of budgetary constraint S. Performing the

implicit function analysis by setting y¼S1
n and x¼S yields the

results summarized in the following proposition (see Technical
Appendix A.5 for proof):

Proposition 3. The optimal investment S1
n increases with S, and the

optimal allocation S1
n/S increases with S when S is sufficiently large.

However, S1
n/S decreases with S when c4c0 ¼ e�ðL1=L2Þðk1=k2Þðx1=x2Þ and

S is small.

Proposition 3 states that, in most cases, the optimal allocation
to Class 1, targeted attacks increases with total budget S. This is
consistent with practice and intuition, because security measures
against targeted attacks, being more difficult to defend against,
can draw higher amount from a larger budget while still keeping
enough investment to combat opportunistic attacks. But in the
case where the network exposure is high and the total budget is
small, Class 2, opportunistic attacks should get more allocation
with increasing S.

This proposition can be further illustrated with numerical
examples. Two sets of the computational results are presented
in Fig. 5, where S1

n/S, the optimal allocation to Class 1 attack, is
plotted against S/L1, the ‘‘normalized’’ budget constraint, in a
family of ‘‘iso-exposure’’ curves. In Fig. 5(a), where k1¼0.000003,
k2¼0.000005, L1¼$2 M, L2¼$3 M, and x1¼x2, those curves are all
concave and increasing, implying that the percentage allocated to
S1
n increases, albeit at a decreasing rate, with S. Also, both the

value and the slope of S1
n/S are higher for larger c, implying that

the allocation to S1
n increases with c for any given S. These results

are consistent with both the above observation of (15) and earlier
result with respect to c. However, Fig. 5(b), where we set
k1¼k2¼0.000005, L1¼$2 M, L2¼$200,000, and x2¼10x1, shows
a distinctively different behavior of S1

n/S vs. S/L1. At small c, the
iso-exposure curves are concave and increasing, similarly to those
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Fig. 5. Optimal investments vs. total budget, inde
in Fig. 5(a). When c becomes sufficiently large, however, the iso-
exposure curves become U-shape. That is, for c greater than some
‘‘inflection point’’ c0, S1

n/S is convex and non-increasing in S/L1: at
small S, S1

n’s share decreases with increasing total investment, and
approaches 100% when S-0; for large S, optimal allocation S1

n

increases with the total investment, and approaches 100% when S

becomes large. Throughout all levels of total investment, SI
n’s

share never approaches 0.
The distinctive behavior of the curves can be interpreted

with Proposition 3 and Lemma 1. In Fig. 5(b), where c0 ¼

e�ðL1=L2Þðk1=k2Þðx1=x2Þ ¼ e�1ffi0:3678 (since ðL2=L1Þðk2=k1Þðx2=x1Þ ¼ 1),
all the iso-exposure curves with c4c0 exhibit U-shape, because
@ðSn

1=SÞ=@So0 when S is small and @ðSn

1=SÞ=@S40 when S is
large. When coc0, S has a lower bound (which is S0 ¼

1=k2 lnc ln �ðL1=L2Þðk1=k2Þðx2=x1Þð1=lncÞ
� �

given by Lemma 1),
hence the behavior of the lower curves. However, when
ðL2=L1Þðk2=k1Þðx2=x1Þ becomes large enough such that
c0 ¼ e�ðL1=L2Þðk1=k2Þðx1=x2Þ41, which is the case for Fig. 5(a), coc0 for
all cA[0,1], and all the iso-exposure curves behave like those in
Fig. 5(a).

In summary, our analytic and computational results show that
under most circumstances (e.g., Fig. 5(a) and part of Fig. 5(b)), the
optimal allocation to Class 1 increases with total security budget.
However, when the relative size L1 to L2 is large enough for a
given ratio of x1 and x2, and when the network exposure is
sufficiently large, optimal allocation to protecting against Class
1 attack approaches 100% when the total investment constraint is
very small, decreases briefly and then increases with increasing
S, and approaches 100% with large budgetary constraint.

Proposition 3 and the ensuing numerical analysis offer key
practical implications. When a firm with relatively low network
exposure and limited budget faces both opportunistic and tar-
geted attacks, it is more effective to allocate the bulk of it to
opportunistic attacks. (See Section 4.1 for detailed discussions on
investment allocation and network exposure.) The percentage
allocated to protecting against the targeted attacks goes up with
increasing security budget. This can be understood from the fact
that opportunistic attacks are, in general, less sophisticated and
stopped more effectively with relatively low level of security
investments. On the other hand, when the information systems
are highly connected and open, the firm with even a limited
budget should cast most of its security investments against
targeted attacks. The network exposure threshold, at which the
investment focus shifts from opportunistic attacks to targeted
attacks at limited budget, depends largely on the relative size of
the potential losses from the two classes of attacks (Lemma 1):
the higher the potential loss from targeted attack relative to that
from opportunistic attack, the lower the exposure threshold.
udget S/L

1
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pendent investments with budget constraint.
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To summarize, a manager with a limited security budget should
focus on protecting against targeted attacks when their potential
loss is high and the information systems widely connected and
open. But in a business environment where information systems
have lower network exposure, it is better for the firm to spend its
limited security investment to defend against opportunistic
attacks.
5. Interacting investments with budget constraint

So far, our model has assumed that the security investments to
counteract the two classes of attacks are independent of each
other; that is, we assume that a firm can invest specifically to
reduce the security breach probability of a particular type of
attack. In reality, however, security measure taken to prevent one
class of attack might help prevent another class of attack. For
instance, anti-virus software, generally deployed to prevent
opportunistic attacks, can also block some targeted attacks.
In this section, we relax the assumption of independent security
investments to account for the interacting or cross-over effect in
the presence of budgetary constrain.

Let ~Si represent the effective security investment for defending
against the ith attack. When investments are independent, ~Si¼Si.
However, in the existence of cross-over effect of security invest-
ment ~Si is expressed as follows:

~Si ¼
Xn

j ¼ 1

mijSj, ð18Þ

where mij represent the effect of security investment against the
Class j attack on Class i attack. In other words, when an invest-
ment Sj is made to counter Class j attack, mijSj can also be
considered as part of the investment made to counteract Class i

attack. Taken all n classes of attack together, we have

~S1

^
~Sn

2
64

3
75¼

m11 � � � m1n

^ & ^

mn1 � � � mnn

2
64

3
75

S1

^

Sn

2
64

3
75: ð19Þ

By definition, mii¼1, 8i. We further assume that investment in
defending against one attack does not negatively impact another;
that is, mijZ0. Therefore, we have 0rmijr1, 8i, j. Incorporating
the cross-over effects of security investment using the effective
security investment~Si, we rewrite (3) and (5) as

Z ¼
Xn

i ¼ 1

zi ¼
Xn

i ¼ 1

~r iLi ð20Þ

and

FðS1,. . .,SnÞ ¼
Xn

i ¼ 1

ðDzi�SiÞ ¼
Xn

i ¼ 1

ðxic� ~riÞLi�
Xn

i ¼ 1

Si, ð21Þ

where ~r i ¼ ~r iðxi,v, ~SiÞ is the breach probability function with
cross-over investment effect, for which the following holds true:

~r1

^
~rn

2
64

3
75¼

r1

^

rn

2
64

3
75 when

~S1

^
~Sn

2
64

3
75¼

S1

^

Sn

2
64

3
75 or

m11 � � � m1n

^ & ^

mn1 � � � mnn

2
64

3
75

¼

1 0 0

0 & 0

0 0 1

2
64

3
75: ð22Þ

Again, we consider the case of n¼2. With this cross-over effect
of security investments taken into consideration, the two breach
probability functions (8) and (9) become

~r1 ¼
x1c

k1
~S1þ1

¼
x1c

k1ðS1þm12S2Þþ1
¼

xc

k1ð1�m12ÞS1þk1m12Sþ1
,

ð23Þ

~r2 ¼ x2ck2
~S2þ1 ¼ x2ck2ðS2þm21S1Þþ1 ¼ x2ck2Sþ1c�k2ð1�m21ÞS1 , ð24Þ

where ~S1 ¼ S1þm12S2, and ~S2 ¼ S2þm21S1. Note that the budgetary
constraint S1þS2¼S is used to rewrite both breach probabilities
as functions of S1. The net benefit (7) in this case can be written as

FðS1Þ ¼ ðx1cL1þx2cL2�SÞ�
x1cL1

k1ð1�m12ÞS1þk1m12Sþ1

�x2L2ck2Sþ1c�k2ð1�m21ÞS1 : ð25Þ

To find the optimal level of S1, we differentiate F in (25) with
respect to S1 to get

@F
@S1

����
S,L1 ,L2v,x1 ,x2

¼
x1ck1L1ð1�m12Þ

½k1ð1�m12ÞS1þk1m12Sþ1�2

þx2ck2L2 ln cð1�m21Þc
k2Sc�k2ð1�m21ÞS1 : ð26Þ

To find optimal level of investment S1
n, we set (26) to zero.

After rearranging terms, we have

ck2ð1�m21ÞS
n

1

k1ð1�m12ÞS
n

1þk1m12Sþ1
� �2

¼�
L2k2x2ð1�m21Þ

L1k1x1ð1�m12Þ
ðln cÞck2S, ð27Þ

subject to the following boundary condition (@F=@S1Z0 at S1¼0),

x1k1L1ð1�m12Þ

ðk1m12Sþ1Þ2
þx2k2L2ln cð1�m21Þc

k2S
Z0: ð28Þ

It is important to note that, when m12¼m21¼0, (27) and (28)
revert back to (15) and (14), the independent case. That is, the
independent investment model in the previous section can be
considered as a special case of this general investment model
when the cross-over effect is nil. Further, the left-hand side of
(27) is always smaller than or equal to one, since the numerator
r1 for all cA[0, 1] and the denominator Z1. Because ln cr0, we
have

0r�
L2k2x2ð1�m21Þ

L1k1x1ð1�m12Þ
ðln cÞck2Sr1: ð29Þ

Compared with the independent case (15), we first note the
appearance of the additional term of S in the denominator on the
left-hand side the cross-over effect of security investment in (27),
besides the addition of the parameters m12 and m21. As S increases,
both sides of (27) decrease. This is important, because the
relationship that the absolute value of S1

n increases with S in the
independent investment case no longer holds for this general
model. In other words, in the cross-over case, increasing the total
budget does not guarantee a higher optimal investment to defend
against individual classes of attacks. However, that S1

n increases
with L1/L2 is still true, because the left-hand side of (27) is a
decreasing function of S1

n, given S, c, k1, k2, x1, x2, m12, and m21.
6. Computational result

Because a closed-form solution of S1
n is impossible from (27),

and the implicit function analysis does not yield interpretable
results, we resort to numerical techniques to examine the proper-
ties of S1

n and S1
n/S. Fig. 6 shows how the allocation S1

n/S changes
with (normalized) budget constraint S/L1, with the same set of
parameters (k1¼k2¼0.000005, L1¼$2 M, L2¼$200,000, and
x2¼10x1) but at different levels of network exposure c, to
compare with Fig. 5(b) in the independent investment case. We
can see that, although the shape of iso-exposure curves looks
similarly to those in Fig. 5(b), there are some important
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Fig. 6. Optimal information security investment allocated to S1 vs. S/L, cross-over investments with budget constraint.
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differences. First, the inflection exposure c0 changes with different
settings of m12 and m21. This can be understood by examining the
cross-over model equivalent of Lemma 1. When we solve for the
boundary condition for S in (28), we can see that for
c4c0 ¼ e�ðL1k1x1ð1�m12Þ=L2k2x2ð1�m21ÞÞ, S has a lower limit S0 (although
here it cannot be expressed in a closed form as in Lemma 1,
because of the addition of the quadratic term in S in (27)). Thus,
c0 decreases with higher m21, and the inflection happens at a lower
level of network exposure (as in Fig. 6(b) where c0ffi0.2765).
Conversely, c0 increases with higher m12 (as in Fig. 6(c) where
c0ffi0.4594). To summarize, in the case of cross-over investment
effect with fixed security budget, the inflection exposure, above
which the optimal allocation to Class 1 attack no longer strictly
increases with budget, goes down when the impact of such
investment on Class 2 increases (and vice versa)..

Another key difference in the cross-over case is the relation-
ship of S1

n/S with c. Proposition 1 and Fig. 5 show that, in that,
when in the independent investment case, the allocation S1

n/S
always increases with c. However, as shown in Fig. 6, when S is
larger than S0 (the value of which cannot be shown in a closed
form, as previously), this relationship is reversed. Moreover, such
a reversed relationship is more pronounced with larger cross-over
effect (as represented by m12 and m21), and the relationship reverts
back to the independent investment case when m12¼m21¼0.
In other words, contrary to the independent investment case,
when security investments show cross-over effect, optimal allo-
cation to Class 1 (as represented S1

n/S) decreases with network
exposure c when the total budget S is large.

Lastly and more importantly, we examine the relationship
between the optimal allocation and the extent of cross-over effect.
To do so, we run a series of numerical analysis of S1

n/S vs. c at different
levels of m12 and m21 (Fig. 7) and at different levels of S/L1 (Fig. 8),
while keeping other parameters constant (k1¼k2¼0.000005,
L1¼$2 M, L2¼$200,000, and x2¼10x1). We note that, for any c, S1
n/S

increases with; in other words, S1
n/S is larger when m21 (i.e., the impact

of Class 1 investment on Class 2 attacks) relative to m12 is larger. We
also note that S1

n/S40 for all c, even when c is very small.
Furthermore, the concavity of the curves, which increases with the
magnitudes of m21 and m12, shows that, S1

n/S first decreases then
increases with increasing c. These observations are in contrast with
the independent investment case, where S1

n/S is a strictly increasing
function of c while remaining 0 until c4c. (The concavity disappears,
and the curves revert back to those the independent investment case,
when m12¼m21¼0.) To summarize, the cross-over effect of invest-
ments changes the behavior of optimal allocation to Class 1 from
strictly increasing to positive and concave. Additionally, at any
given level of network exposure, the more impact the investment
on defending against Class 1 attacks has on the defense against
Class 2 attacks, the higher the optimal allocation to Class 1 attack is.

Our analysis shows that, in general, the investment with the
higher impact on other attacks should receive higher allocation.
This is to be expected, because one would need to spend less on,
say, targeted attacks when the investment in opportunistic
attacks can also protect against targeted attacks to a certain
degree. While the characteristics associated with individual
attack dominate the optimal allocation in the case of independent
investment with budgetary constraint, the cross-over scenario, as
expected, introduces a mixed response. This is evident when one
compares Fig. 2, where optimal investment displays an ‘‘all or
nothing’’ allocation for very large and very small network expo-
sure, to Fig. 7, where a smooth and moderate allocation among
the two classes of attacks over a large range of network exposure
results from the cross-over effects. Our model suggests that the
firm in question should spread the investment allocation to both
classes of attacks over a large range of network exposure,
particularly when the budget is large relative to the potential
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loss. However, when security budget is limited, a firm with high
network exposure should quickly focus on one of the attacks,
similar to the independent investment case. It is important to
note that analyses in the cross-over scenario revert back to the
independent case when both m21 and m12 are zero.
7. Discussion and conclusion

In this study, we develop a model for optimizing information
security investment allocation against multiple attacks. This
study advances the theoretical development in the growing field
of economics of information security by closing several gaps in
the extant literature and, in doing so, offers important manage-
ment implications. First, our analytic model takes into account
the organizational reality that all firms face budgetary constraints
when making investment decisions. Second, our model incorpo-
rates the concurrent heterogeneous attacks, a more realistic
assumption than the individual, one-at-a-time attacks assumed
by prior studies. We identify opportunistic and targeted as two
classes of attacks that firms face and derive the breach probability
functions for these attacks using first principles. Third, we adopt
the concept of scale-free networks, a theoretically robust and
empirically supported framework for examining the topology and
epidemics in networks of corporate information systems, as the
basis for investigating the security characteristics of firms in a
network. Lastly, we develop a framework to consider security
investments with cross-over effects on other classes of attacks.

Our results offer insights into how managers should allocate
security investment budget at various levels of network exposure,
relative potential loss, investment effectiveness, and total budget.
In particular, we show that, when security budget is small, firms
are better off concentrating their investments on only one class of
attack. There are occasions, particularly when the total invest-
ment is very small relative to the expected loss, where allocating
100% of the security budget to one class of attack is the optimal
decision, suggesting an important principle of security invest-
ment: When the total investment budget is limited, it is better off
concentrating on defending against one class of attack only, even
when threats from other classes of attacks exist. This runs counter
to the common attempt to cover all attacks all the time. Such a
practice, though intuitive (as in ‘‘do not put all eggs in one
basket’’), would not produce enough protection against any of
the attacks when the budget is limited, resulting in a sub-optimal
allocation. In other words, when a firm plans to spend only a
small amount on security, it is better off for the firm to spend on
one measure for adequate protection against one class of attack
than to split the small budget to both classes, resulting in
inadequate protection against both. For instance, when a firm
only has the budget to install anti-virus programs on every
computer, it is better off to do so than buying only a few anti-
virus software licenses to save money for the installation of IDS
on one of the several production servers, resulting in ineffective
protection against both types of attacks. It is worth emphasizing
that such a result is the artifact of a very small budget. Without
budget limitation (or if the budget is large relative to security
investments), our model shows that firms should invest in
protection against both classes of attacks, which is consistent
with prior research such as Kumar et al. (2008).

Among the many numerical results, those with L1 * L2 and x1 ) x2

(such as in Fig. 5(b)) simulate the two classes of attacks the best. This
is because targeted attacks (Class 1) often result in higher losses than
opportunistic attacks (Class 2), although the latter happens much
more often than the former. Our first observation is, in the case of
independent investments (Section 4), that optimal allocation to
targeted attacks increases with network exposure. This result is
consistent with the general property of scale-free networks: They
tend to be robust against random, opportunistic attacks but are
vulnerable against targeted attacks (Anderson and Moore, 2006). Such
vulnerability comes from the fact that attacks targeted at those highly
connected nodes can endanger the whole network (Albert et al.,
2000). When a firm’s information systems are highly connected and
open (i.e., with high network exposure, as implied by (10)), it is highly
vulnerable to targeted attacks; it, therefore, demands more of its
security budget to defend them. With higher network exposure,
protecting against targeted attacks that have lower attack probability
but higher potential loss should be given a higher priority.

As with all analytics, a number of assumptions for making the
model manageable may limit its applicability and generality. For
instance, mathematical assumptions (continuous, twice differen-
tiable, and bounded) for all the variables and functions in the
models are customary in most economic analyses but still
represent an ideal case for manipulation. The classification of
attacks into two classes – opportunistic and targeted – can be
imperfect: Although, as noted in many studies (Casey, 2003; Poff,
2009) that the majority attacks can be classified as such, there are
exceptions that should be considered as an extension to the
current model. Spear phishing, for example, can be considered
as a hybrid of opportunistic and targeted attacks (Vijaya, 2011).
The two-stage model (Fig. 1), which assumes that security
breaches result in losses to the firm, is a simplified version of
reality. In practice, measures such as intrusion detection systems
and entrapment servers can help companies avoid losses even
when the first layer of security defense is compromised. Also, our
assumption that S1þS2¼S means that the budget is spent in
whole. Although in reality employees often tend to use up the
budget allocated to a specific project or program, theoretically
firms do not have to spend all of their security budget, in which
case the constraint would be S1þS2rS. Our assumption is made
mainly to simplify the model development and to make the
mathematical manipulation manageable; we expect future stu-
dies to consider the more general case S1þS2rS. Finally, even in
the current model, there are other possible relationships among
variables that could be further explored and modeled. Such
relationships include potential loss with respect to network
exposure (to model the benefits of particular system configura-
tions to business) and attack probability (x) with respect to
security investment. Although these considerations can add to
the existing model, we limit the functional relationships to those
presented in this paper based on our belief that they yield the
most significant insights without overly taxing the analyses and
computations.

Future studies that relax these and other assumptions, as well as
empirical verifications of the analytical results, can help advance this
stream of research. For instance, an extension to the model in Fig. 1 to
take into account multiple stages of information security can offer
additional insights into how a firm should choose among different
types of security investments. Another interesting research direction
could be to complement the ‘‘equilibrium’’ conditions implicit in all
economic analyses with considerations of the dynamic and inter-
active nature of various aspects of information security with techni-
ques such as real options analysis (Li, 2009; Kaufman and Li, 2005).
In addition, although we recognize that the scale-free network theory
is suitable for our model of corporate networks, other network
theories, such as heuristically optimal topology (HOT) (Wallinger
et al., 2000), have been proposed for analyzing information security
characteristics in a more physically oriented network environment
and can be adopted to extend the current research. Also, although the
breach functions in this study are mathematically derived based on a
priori principles that are theoretically and practically validated, it
would be interesting to compare their functional forms to empirical
data in a future study. Lastly, although we only focus on security
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investment on individual information systems, scale free network
theory has policy implications of information security beyond firm’s
level, such as the robustness of the network (Albert et al., 2000) and
security of an information supply chain (Huang et al., 2008b). It is
both academically challenging and practically important to extend
the nodal analysis presented here to the network level to understand
those important policy issues.
A. Technical appendix

A.1. Derivation of opportunistic attack breach probability

Because the theory and results are well developed in the prior
literature, we summarize the key assumptions and findings below
without reproducing the detailed derivations. Consider the case
that an epidemic event starts spreading in a scale-free network.
The rate of epidemic spreading, l, is determined by v, the
infection rate of a previously uninfected node if it is connected
to an infected one, and d, the remediation rate of an infected
node:

l¼
v

d
: ðT1Þ

Let Pk (t) denote the relative density of infected nodes with k

connections – that is the probability that a node with k connec-
tions is infected – at time t. The mean field rate equation gives
(Pastor-Satorras and Vespignani, 2001)

@PkðtÞ

@t
¼�PkðtÞþlk 1�PkðtÞ½ �YðlÞ, ðT2Þ

where Y(l) is the probability that any given connection points to
an infected node, which can be given in the lowest order of l
(Chang and Young, 2005)

YðlÞ ¼
e�lm

lm
, ðT3Þ

where m is the minimum number of nodes available for connec-
tion in such a network. Solving for Pk in a steady state
(i.e., @PkðtÞ=@t¼ 0), we get

Pk ¼
klYðlÞ

1þklYðlÞ
: ðT4Þ

Substituting (T3) into (T4) and averaging Pk over k, we get the
average infection probability of any node in the network (Pastor-
Satorras and Vespignani, 2001)

Pepidemic ¼ be�ð1=lmÞ, ðT5Þ

where b is a normalization constant.
To extend the (T5) to our model for security investment of the

firm’s information systems, we make the following observations.
First, we assume that the effect of security investments S in
protecting the information systems against the potential breach
can be represented as the reduction in the infection rate l in (T5),
and, for simplicity and without loss of generality, we assume a
linear inverse relationship between security investment and
infection rate. We further require that l and S satisfy the
following boundary conditions: First, the attack spreads freely
to the node when there is no security investment made; that is,
l¼1 when S¼0; second, no finite security investments can fully
block all attacks; that is l-0 only when S-N. Such a relation-
ship with the above boundary conditions can be expressed in the
following manner:

l�
1

kSþ1
, ðT6Þ

where kA[0,1] is a scaling factor for S. As such, k also measures the
level of impact, or the effectiveness, of the security investments—for
any given security investment S, the higher the k, the greater
reduction of the infection rate.

Next, we note that the network exposure c of an average node
in such a network is strictly increasing in m. And c¼0 when m¼0.
Further, the systems are highly exposed to attacks when they are
completely open; that is, c-1 when m-N. Without loss of
generality, we assign the following relationship between c and m

that satisfies all the above conditions:

c� e�ð1=mÞ: ðT7Þ

Lastly, we note that the level of threat from attacks is not
explicitly considered in (T5), which can be accounted for by
multiplying (T5) with the attack probability x. With this mod-
ification, (T6) and (T7), and adjusting the normalization constant
b to reflect the boundary condition (1), we find that the breach
probability for an opportunistic attack can be written as

xUPepidemic ¼ xU e�ð1=mÞ
� �1=l

¼ xckSþ1, ðT8Þ

which gives the expression for r2.

A.2. Proof of Lemma 1

Rewriting the boundary condition (14), we have

ck2Sr�
x1k1L1

x2k2L2

1

ln c
: ðT9Þ

Because ln co0. Taking natural logarithm on both sides, we
get

k2ðlnvÞSr ln �
x1k1L1

x2k2L2

1

ln c

� �
: ðT10Þ

Solving for S, we get

SZ
1

k2lnc
ln �

x1k1L1

x2k2L2

1

ln c

� �
: ðT11Þ

Since ln co0, the right hand side is greater than 0 when the
term ln �ðx1k1L1=x2k2L2Þð1=lncÞ

� �
o0, or

�
x1k1L1

x2k2L2

1

ln c
o0: ðT12Þ

Solving for c, we get

coe�ðL1=L2Þðk1=k2Þðx1=x2Þ: ðT13Þ

Therefore, from (T13) and (T11), we know that when
coc0 ¼ e�ðL1=L2Þðk1=k2Þðx1=x2Þ, S has a lower bound

S0 ¼
1

k2ln c
ln �

L1

L2

k1

k2

x2

x1

1

ln c

� �
,

and that proves Lemma 1.

A.3. Proof of Proposition 1

Starting with (17), we find the relationship of S1
n and S1

n/S with
c by setting y¼S1

n and x¼c in (16):

@Sn

1

@c
¼�

@F=@c

@F=@Sn

1

: ðT14Þ

Note that @Sn

1=@c¼ dSn

1=dc in (16), because c is independent of
all other parameters S, L1, L2, k1, k2, x1, and x2. We first examine
the denominator of the right-hand side of (T14) using (17):

@F

@Sn

1

¼
k2ðln cÞck2S

ðk1Sn

1þ1Þ2
�

2k1ck2S

ðk1Sn

1þ1Þ3

¼
k2ðln cÞck2S

ðk1Sn

1þ1Þ2
k2ðk1Sn

1þ1Þln c�2k1

	 

: ðT15Þ
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But we know k2ðk1Sn

1þ1Þln c�2k1

	 

r0, because its first term

is negative (ln cr0) and its second term positive. In other words,

@F

@Sn

1

r0: ðT16Þ

And since we can rewrite (T14) as

@Sn

1

@c
¼

@F=@c

� @F=@Sn

1

� � , ðT17Þ

we know that the sign of @Sn

1=@c is determined by the numerator,
@F=@c, alone. Using (17) and rearranging the terms, we have

@F

@c
¼
k2Sn

1ck2Sn

1�1

ðk1Sn

1þ1Þ2
þbck2S-1 1þk2ðln cÞ

	 

, ðT18Þ

where, for simplicity of manipulation

b¼
L1

L2

k1

k2

x2

x1
: ðT19Þ

1þk2ðln cÞ
	 


determines the sign of (T15), because all other
terms on the right-hand side are positive. Therefore, as a suffi-
cient (but not necessary) condition, when 1þk2ðln cÞ

	 

Z0, or

cZc ¼ e�ð1=k2Þ, ðT20Þ

we have (T18)Z0, and subsequently, as argued earlier, @Sn

1=@cZ0.
Also note that, because S is independent of c, @ðSn

1=SÞ=@c¼

ð@Sn

1=@cÞ=SZ0 follows. Therefore, for all cZc, where cA[0, e�ð1=k2Þ],
both @Sn

1=@cZ0 and @ðSn

1=SÞ=@cZ0.

A.4. Proof of Proposition 2

The proof of Proposition 2 is omitted, because it is straightfor-
ward from (16) and (17) and setting y¼S1

n and x¼L1/L2.

A.5. Proof of Proposition 3

To find the relationship of S1
n and S1

n/S with S, we set y¼S1
n

and x¼S in (16):

@Sn

1

@S
¼�

@F=@S

@F=@Sn

1

: ðT21Þ

(We use partial derivatives on the left-hand side, because S is
independent of all other parameters.) Substituting (17) into the
numerator, we have

@F

@S
¼

L1

L2

k2

k1

� �2 x2

x1
ðln cÞ2ck2S

Z0: ðT22Þ

With (T16) and (T22), we know

@Sn

1

@S
Z0: ðT23Þ

Next, we examine how S1
n/S varies with S. We start by writing

out the following:

@Sn

1=@S

@S
¼
@Sn

1=@S

S
�

Sn

1

S2
¼

1

S2
�S

@F=@S

@F=@Sn

1

�Sn

1

� �
: ðT24Þ

Substituting (T15) and (T22) into (T24) and rearranging terms,
we get

@Sn

1=@S

@S
¼
�k2bðln cÞ2ck2SS=ðck2Sn

1=ðk1Sn

1þ1Þ2Þ k2ðk1Sn

1þ1Þln c�2k1

	 

�Sn

1

S2

¼
k2bðln cÞ2ck2ðS-Sn

1ÞSðk1Sn

1þ1Þ2þSn

1 k2ðk1Sn

1þ1Þln c�2k1

	 

�S2 k2ðk1Sn

1þ1Þln c�2k1

	 
 , ðT25Þ

where b is defined in (T19). Because the denominator is positive,
the sign of (T25) is determined by the numerator, which can be
written as the following, after rearranging the terms,

Numerator of ðT25Þ ¼ k2ðk1Sn

1þ1Þ
�ln c bðln cÞck2ðS-Sn

1ÞSðk1Sn

1þ1ÞþSn

1

h i
�2k1Sn

1: ðT26Þ

It is not possible to determine, in general, the sign of (T26), but
we can examine the boundary cases where S is very small and
very large. When S-N, the first term in the bracket dominates
and is positive (since we have (ln c)2 and all other parameters are
positive), (T26) is positive. Therefore, when S is sufficiently large,
ð@Sn

1=@SÞ=@SZ0.
When S-0, S1

n-0 also (since S1
nrS always), and (T26)

approaches k2ln cSn

1�2k1Sn

1, which is negative, because ln cr0.
This condition is only possible when c4c0 ¼ e�ðL1=L2Þðk1=k2Þðx1=x2Þ

according to Lemma 1. Therefore, when c4c0 ¼ e�ðL1=L2Þðk1=k2Þðx1=x2Þ

and S is small, ð@Sn

1=@SÞ=@Sr0. This concludes our proof of
Proposition 3.
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