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Abstract

Despite their status as foundational concepts in softwageeering, many software
design decision-making principles and heuristics, sudhfasmation hiding and the de-
laying of design decisions, are still idiosyncratic, ad hmmorly integrated and not clearly
based on any sound theory. In this paper, we develop an ecosi@sed approach to
providing a firmer foundation for software design decisioaking heuristics. We start
with the premise is that many software design decisionssmergially about when if ever
to make irreversible but delayable investments of valuedsdeurces in software assets of
uncertain value. This formulation reveals an analogy betwsoftware design decisions
andreal optionswhich are capital investment analogs of financial call apgidor which
there is a well-developed theory and body of knowledge. htiqadar, the theory of real
options captures precisely the idea that there can be gignifivalue in having flexibility
to wait for better information before committing valuabsources to develop or obtain
assets. The options-theoretic nature of many softwarg@delgcisions allows us to bring
option theory to bear on an analysis and refinement of cljtdgaely employed software
design decision-making heuristics.



1 Introduction

In design situations of significant complexity, the utility of precise numercal analytical
approaches can break down, leaving engineers largely dependent on heuristic guig®]ines
Heuristics are essential intellectual tools of the system architege foblem with heuris-
tics, however, is that it's hard to evaluate their validity owinghte informality with which
they are stated. Heuristics such as “Simplify, simplify, simpglifgjght require little valida-
tion. In other cases, however, validity is not so clear; and in such caseshould seek an
understanding of the rational basis for our belief in the validity of our heuristic goiekl

Should a software designer “Always write a specification?” “Always use in&bion hid-
ing?” “Delay design decisions until they are forced, so as to have the best passtsmation
at the time they are made?” In general, we need to distinguish good heurnistiteadequate
ones, and to understand the ranges within which heuristics are valid.

Because software design problems are complex, software engineers tend tolusgelyd
on a variety of critical and widely accepted design heuristics. Key cosgegitide informa-
tion hiding [26] (“hide design decisions that are likely to change”); program fam[R5]
(“delay making design decisions that distinguish sub-families”); spirahso#t development
processes [4] (“attack the greatest risks first”); delaying decisions3@lg,‘each design de-
cision locks in upstream decisions and constrains downstream decisions”);yprotpf4]
(“spend a little early to determine the best course of action”); itezaivhancement [1] (“de-
velop a flexible, operational system early then add capabilities increttygntand reuse [19]
(“spend extra to design assets so that you can amortize their costs ovgleuges”).

Unfortunately, many such heuristics at the heart of software design doctrithpractice
are idiosyncratic, poorly integrated, not clearly based on or justified by any sbaady, and,
we suspect, suboptimal in many situations. Concepts such as information hidirg,ofvhi
the utmost importance, are presented in hard-to understand terms that obscuaiotied
justifications for such concepts.

This state of affairs has many negative consequences. It makes it unniécéssdrfor
software designers to reason effectively about design; for teachersdo tiea decision-
making criteria of the field as a coherent, well founded body of knowledge; for students t
truly grasp these criteria; and for managers, who think in terms of weadtkimization over
time, to communicate effectively with engineers, who reason in t@fgormation hiding,
delaying of design decisions, secrets of modules, and the like.

Worse yet, the lack of a rational basis for heuristics denies us a satisfyelgattial grasp
of the deep connections among critical software design concepts. Does a comucturetr
underlie the ideas of program families, information hiding, delaying of design desisind
architecture, for example? Not having a good answer to such a question ultirezigdyto
unnecessary problems in cost, quality, timeliness and pain involved in emgigsoftware.

Is software design an inherently opaque subject that demands uniquely strange difficul
and vague concepts? We suspect that the answer is no, and that the opacity of cuwane sof
design doctrines is largely attributable to shortcomings in the theoretoaldfations of our
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decision-making heuristics—insofar as there is any real theory at all.

One approach to providing a sound basis for decision-making is to appeal to economics,
as advocated notably by Boehm [3]. Such an approach recognizes that softwgredizsi
sions concern the expenditure of valuable resources (time, money, memory) #gte.jace of
uncertainty over future payoffs. The economics approach seeks to make decis&mabéan
to analysis using techniques from the microeconomics areleasion-making under uncer-
tainty.

It is clear that an economics approach to software design decisions is pbal3ddign is
well understood to be an anticipatory activity that involves projections of aartain future
and consideration of resource expenditures at every step. For example, the geserai
software architecture focuses intensely on the question of the ways in whysteansshould
be designed so as to accommodate “likely change” at an acceptable cost [30].

Consider in particular the information hiding criterion for designing the modutaecsire
of software. The idea is, again, to invest in modules that hide aspects ofeansisit are
viewed as likely to change independently [26, 28]. The costs of a modularizationastecisi
includes the cost of designing, implementing, validating, verifying and documentinmgean i
face; the lost opportunity to use the secret of a module directly; and the downstosamof
program restructuring if the future turns out to be other than as anticipated. Banefitde
reduced future evolution costs; lower project costs owing to proper absiantid decompo-
sition; the flexibility to use a module in multiple systems; and the flexibibtgitoduce related
systems by varying design decisions independently. Modularization decisions capethus
viewed as decisions to invest resources in the face of uncertainty ovechdrages are likely,
and thus over the future profitability or payoffs of the investment decisions.

In this paper we present the theory of real options as a tool for analyzing and evgluati
such critical software design decision-making heuristics as informatdindnand delaying
of design decisions. The idea is not that we should calculate options values in agalyzi
specific design decisions, although that might be useful in some cases. Rathse a@ions
concepts amtellectual toolsto help us to understand, evaluate, and improve the heuristics
that we employ in making design decisions.

The justification for this approach lies in a two-step analogy between filamptians and
design decisions. First, we will argue that many software design decisartsecviewed as as
decisions about when if ever to make irreversible but delayable capitatmeats in assets
of uncertain value. Second, we appeal to an analogy between capital inmeskecesions
and financial call options—an analogy that has been the focus of important recenthiesea
finance and capital investment [8, 9, 10, 13, 22, 34].

Briefly, a call option confers upon its holder the right but not the obligation to purclsase a
sets (such as stocks) at set prices for certain periods of time. Thel gapgstment manager,
and we now claim the software designer, is in an analogous situation of having tbggre
tive but not the obligation to invest resources in “real” assets, suchwasrgmants or user's
manuals.



To the extent that the analogies hold, our approach allows us to draw upon the well de-
veloped theory and body of knowledge about options in reasoning about software decision-
making heuristics. By formulating software design decision-making in finhterias gen-
erally, and in terms of real options in particular, we believe that we npakgress toward
establishing rational foundations for understanding, improving and perhaps even generati
important software design heuristics. We hope that this line of research mighatdly help
us rationalize our discourse on software design by showing that important heudatidoe
seen as manifestations of a common underlying options-theoretic (or other advaacedki)
structure. In this paper we shall begin by presenting the basic concepts in opismmetic
terms.

To the best of our knowledge, we are the first to connect real options to the problem of
software design decision-making. One of the authors presented an earlier papengttie
basic idea at the 1996 Second International Software Architecture Workshop [32va@iur
also appears to be distinguished in two additional ways. First, we emphaathematical
rigor in developing our arguments. Second, seek not so much practical, financetdiaised
for direct application in project management, but rather theoretical exjpbasaand tools
for reasoning about the highly abstracted heuristics on which software desigpersddso
heavily.

The rest of this paper is organized as follows. Section 2 discusses the rettprakie
(NPV) approach and its shortcomings. Section 3 provides an informal introducttbe airea
of financial call options and how they relate to software design decisionsosdgprovides
the requisite mathematical background for the remainder of the paper. Sectiandlfode-
fines some basic options terminology, and also presents known results on the opéiromiee
of call options. Section 6 describes the basic idea of real option theory and hefate it
to software design decisions. Section 7 presents an example showing, in reitehdsv
the real options approach can be applied in reasoning about a fictional problem of deciding
when if ever to restructure a software system to improve its infondtiding characteristics.
Section 8 illustrates the theory of the preceding section by means of a simpéinahexam-
ple. Section 9 presents a number of qualitative design heuristics and insighkiesidesm the
options view of software design. Section 10 ends with a summary and concluding thoughts.

2 Net Present Value

The traditional economic approach to analyzing software engineering decisionggomus
so-callednet present valugNPV). The financial aspects of Boehm's seminal article and book
on software engineering economics [3], emphasize NPV, for example. Boehm doessaddr
uncertainty over the present state of nature using the concept of the expectedfuafoe-
mation, but he does not address strategies for responding to uncertainty about theTtuure.
need to reason about and respond to uncertain futures is critical to the isoftesagner, and

is the dimension of uncertainty that options theory addresses directly.
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More recently Favaro has emphasized the key role that financial analygiagain soft-
ware engineering—in the area of software reuse, in particular [11]. Faxdribully criticizes
analysis techniques that have been used to reason about investments in rethse e
known to have serious shortcomings in relation to the NPV approach [5]. Fhvemsettles
on NPV as the most appropriate investment analysis technique.

Under the traditional NPV approach, you analyze an investment decision by faslata
ing the present value of the income stream that the investment will gendratieire income
IS uncertain, you compute the expected present value, which weights the possibyitiheir
estimated likelihoods. Next you calculate the expected present value of¢hensf expen-
ditures required to implement the decision. The NPV is the first quantity minusettend:
the value of the expected income minus the expected outflow. You then employ thiemiadit
NPV rule taught to every business student: invest if and only if the NPV isip@§H].

A key idea behind the NPV approach is that benefits received in the future should be
discounted according to an assumed interest rate that generally depends on tratbcora
nomic factors and on the riskiness of the proposed project. By discounting, we mean that
dollar that is to be received tomorrow is worth less than a dollar held to@lhg. reason is
that, with a non-zero interest rate, you could invest less than a dollar todggt a dollar
tomorrow. Tomorrow's dollar is worth today what you would have to invest todéanave the
dollar tomorrow. A dollar received in two days is worth even less today umsgawith daily
compounding, even less would have to be invested today to yield that dollar in W&o da

Unfortunately, the simple NPV rule is often suboptimal, because it is founded aulty f
assumption. It views the investor's (or software engineer's) decisionragmuy-or-never, in
the sense that if the investment is not made now, the opportunity to investfsriesgtr. If the
only possibilities available to the investor are to invest now or inmeser, then she is justified
in following the traditional NPV rule. However, many investment diecis, including many
of those required to effect software design decisions, can be delayed withgatrigithe
prerogative to invest later should conditions turn out to be favorable.

A decision not to write a user's manual today, for example, can be reversedtenmin
the face of uncertainty over the future value of such a document, one might decidayo del
investing valuable resources in it. However, should it become cleatitb&tenefits of having
the manual are likely to outweigh the cost to produce it, then one could reversectei®d¢o
delay investing, and invest the resources needed to produce the document.

Indeed, delaying software design decisions has long been recognized as an impétrtant s
ware design strategy [16]. The theory of options suggests why this might be so. Unlike a
decision to delay investing, a decision to invest is irreversible.eQmie, money and mate-
rials are invested in such a document, those resources cannot be recoveesdrbing the
decision to invest. The manual might have some scrap value, but the decisiomrap it isn't
a decision to reverse the investment, but rather a subsequent decisidirofbtee acquired
asset at its market value, whatever that might be. In many softwargndeases, the scrap
value of a software artifact is essentially zero. The non-reversitafidecisions to invest in



software assets is quite profound.

This asymmetry in the reversibility of decisions to invest and to dehagsting brings
into play several strategies beyond traditional NPV that should be consideaigtdnmpting to
make optimal decisions, and which shed light on the situation of uncertainty abouttine f
in which the software designer often finds herself. Specifically, we sd¢eathevestor's or
designer's decisions can be mammtingenton what kind of future actually unfolds. For
instance, an investor can wait for a month, and decide not to invest if the methmeveals
information indicating that the likely payoff would be negative. Or perhaps afteomth the
uncertainty over the payoff is less, even if the expected payoff is the sadé¢hat might be
enough to change the wary investor's mind.

The theory of options shows that this type of wait-and-see strategy can haveraebarge
pected payoff than investing right away even when discounted to the presenB&wuan when
the NPV rule indicates that an investment has a positive expected vatae, lite suboptimal
to invest right away. The basic problem is that the NPV approach doesn't propedyird
for the combination of the factors of uncertainty, irreversibility and one'btalbd postpone
decision-making.

Of course, if the resources invested in an asset can be recovenddifrconditions turn
sour, then a decision to invest is reversible, and in this case it wodldestd view investing as
a now-or-never decision: Invest if there's a reasonable chance of a good paydgdf)layour
money out later if things don't work out. However, as we noted, expenditures madetal capi
investments, and in implementing software design decisions, usually canmetdeered.
Investments in software design decisions are thus genemahiersiblebut often delayable.

Similarly, if the future is certain, then NPV is an adequate decision ftieis certain that
an investment will produce a profit, then there is no sense in not investing.e@aty if an
investment is a sure loser, no rational decision maker would invest. Thespmoblthat when
the future is uncertain, and when in particular there is a chance that annmar@swill lose
(even if the expected return is positive), then it can pay to wait foebatformation before
you invest.

Of course a decision to delay investing can itself have costs. If asusethual would
provide benefits today—e.g., for test case design—then to delay investing igtotfarse
benefits. Delay can have an opportunity cost, too. The optimal decision strataggdsmthe
value of waiting for more information against the cost of not having assets noatl{leaive
software design heuristics such as “always write a manual” can be wostldyptimal.

Rather than viewing investments under uncertainty as now-or-never propositi@ss or
being reversible, the approach we emphasize in this paper stresses theatieempanies and
software designers alike haepportunitiesto invest, and that they must decide how to create
and exploit such opportunities optimally. We view optimal design decision-makingjmasoa
optimal timing of decisions to exerciggtions—i.e., to exploit investment opportunities.

The success of the “real options” view of capital investment is based on thetanpor
observation that investment opportunities are analogous to finaatialptions.A call option



confers upon its holder the right but not the obligation to purchase an asset at a det cost
a period of time. Call options are options to purchase financial assets such less stbe
valuation and optimal exercise of such financial options has been an actvefaesearch in
finance over the past two decades. More recently, researchers have bg@mgasults from
the area of options to capital investment problems, and this has lead to theefebwf fieal
options theory.

The theory of real options is based on a strong analogy between call options and capital
investment opportunities. The analogy is that when a company makes an ibkvespital
investment, in effect it “exercises” a call option. That is, it exses its prerogative to invest
resources to obtain a real asset. To make the analogy explicit, suchmevesipportunities
are called “real options.” A real option can be seen as an opportunity to &l aather than
a financial, asset, and as the flexibility that a manager has to delay decid@tgexr or not to
invest [31]. Thus a company's capital investment problem can be viewed as ob&infing
and optimally exercising real options.

The central idea in this paper, then, is to view software design decision-maicapital
investment decision-making and to better understand design by employing conoapthdr
theory of real options—a theory that in turn borrows heavily from the theory of finaoailhl
options. We present this work as a step toward theoretical foundations for softl@aign
heuristics based on new concepts from advanced finance. We do not believe thapidgvel
such a foundation will make software design easy. Estimating the relevamggers of actual
design situations will remain hard or impossible in real projects. Evémplausible estimates
of future benefits and likelihoods, computational complexity and other barriers migtgryire
instrumental application of such theories. We are not proposing a silver bullet.

Indeed, we do not even intend primarily to present options theory as an analgbtatl t
although it might be useful in that mode in some cases—»but rather an intellestuitd help
us to think better about complex design situations. We see a number of benefits from this
line of research. First, like the Navier-Stokes fluid flow equations, a good theamellec-
tually satisfying and useful even if it can't always be applied directlgcoid, we suspect
that many software designers are operating with design rules of thumb thégraenstrably
suboptimal, and that basing heuristics on well developed theories can help desanae
and better understand their heuristics. Third, giving software engineers knowbédgy
concepts in finance in the form of financially-based heuristics could help to bridgeaus
communication gap between software engineers and capital investment msanage

In this paper we make and present evidence for three claims. First, mamasafiesign
decisions amount to decisions about capital investment under uncertaintyrsrpditg and
delayability. Second, we can understand key software design principles as addat a
iosyncratic rules that implicitly reflect the capital investment chtmaof software design and
that in many cases tacitly embody real-options-based strategies. appéaling to advanced
concepts in finance appears to offer some promise to help us to simplify, watifypalize,
generate, and improve important software design decision-making heuristics.



3 Informal Overview of the Options Approach

In this section we show informally by means of a simple example the principas idehind
the options approach to software design decisions. A more complete, formalergappears
in the remaining sections.

Let us suppose that an engineer is considering remodularizing a large softwara syst
impose a new information hiding interface (c.f., Griswold [15]). Such anfiate is intended
to hide a design decision, or “secret,” that is judged likely to change and thatratitkrles
needn't “know” about. The expected benefit of such an information hiding approach is that i
keeps the cost of change down by limiting dependences on aspects of a system tkalare li
to change.

Let us estimate that restructuring will cost 1600 dollars. Hereafterqpeess all resource
figures in dollars. Since this is a costly investment, the engineer must porreéullyathe
potential benefits from the new design before going ahead with it. We formulatedbkepr
as having to decide when if ever to perform the restructuring. The decisionasabte to
an options analysis because, like many software design decisions, it istehastby the
combination of uncertainty about future outcomes, irreversibility, and delatyabil

First, the benefits of restructuring are uncertain, depending on when or whether-the a
ticipated requirements changes actually materialize. Second, a de@siovest would be
irreversible: The expense incurred in restructuring the system would be werabte. One
could revert to the old system, but the money spent restructuring would be losd, i@ de-
signer is not forced to make a decision immediately, but has flexibility tqopost deciding,
hoping to make a better decision later.

The nature of the uncertainty about the future is critical in this case. If thgriasknew
for certain exactly how much cost-savings the information hiding interfacedwpald, then
her problem would be simple: Restructure if and only if the future profits discountdgeto
present time exceeds the cost of 1600. However, the future profit stream franrctest
ing could depend upon uncertain changes in usage patterns, new hardware, other changes in
technology or markets, etc.

Thus the designer might be left with no more than a model of how the future profit stream
depends on events that might or might not occur. In this case, at any given timd,drase
estimates of the lifelihoods of and benefits associated with various outcamesgpected
valueof the future profit stream discounted to the present time can be computed. For brevity
we refer to this expected discounted value asetkgected benefdf a decision to invest at a
given time.

Let us consider a particularly simple model. Suppose that the expected benefitwf-res
turing immediately is 2200. Furthermore, suppose that the benefit of restructuringomie m
from now is either 3300 or 1100, but that the outcome depends on how certain events turn out
between now and then. After one month, the actual outcome will be known; but suppose that
at present we can only estimate that each outcome has a probability of occur@uag Afso,
let us assume a discounting factor of 1.1 per month. That s, 1.1 dollars a month froaréow
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worth one dollar today.

A standard software engineering approach to this decision problem would usedhe tra
tional NPV rule: If the NPV—the expected benefit at the present time minus theterpec
cost—is positive then invest, otherwise do not. In our example, the cost tst isvE600, and
the expected benefit at the present time is 2200, so the NPMis— 1600 = 600. The con-
clusion from the NPV rule would thus be to restructure immediately for an eegegxayoff of
600.

Is that the best policy? We'll see thatitisn't. The NPV rule views the imast problem
as a now-or-never decision. If there were no possibility of delaying the decisien,the
NPV rule would be justified. However, as we said, the engineer has the flextbilitostpone
deciding. If she invests today, she runs the risk of losing money if the unfavorabiarse
emerges. Instead, she can wait a month and undertake the restructuring onlgiifi&tieon
turns out to be the one in which the benefit is 3300 rather than 1100. Interestingly, the NPV of
this strategyat the present times significantly greater than the NPV of investing immediately,
at

(0.5)(3300/1.1 — 1600/1.1) = 773.

This formula represents the idea that the cost to invest in a month is theiisarominal
dollars as it is today (1600), but that the value of those dollars is less by a fafiexting
an interest rate of 10% (1.1); and that in a month we stand even odds of being able to pa
1600 for an asset worth 3300 discounted dollars. If the benefit turns out to be 1100 rather than
3300, we wouldn't invest, because to do so would surely lose money. Because andicisi
invest today would be irreversible, and because the future value of thenmseisis uncertain
and might be less than the cost, and, finally, because the designer has the flewilpiy,
waiting is a better strategy.

To explain in more depth what options have to do with this problem, we need to introduce
some basic options concepts. An Ameriaal option (on a stock) is a financial contract
between the option writer and the option holder that provides the holder the right but not the
obligation to acquire a share of stock from the writer at a certain pficealled thestrike
price, by a certain date. If the option holder decides to use the option to buy a sharelof stoc
from the writer at some time, she is saidexercisethe option. By exercising the option at
time ¢, the holder acquires an asset wofth and, to acquire this asset, she pays the exercise
costl. The cost to exercise isand the expected benefitys. (The price of a stock reflects an
expectation about the future value of ownership in the issuing company.) Nota¢hgption
holder is not obligated to exercise the option evef}; if> L; she may wait until a time of her
choosing, even possibly letting the option expire without exercising it.

Clearly, a rational option holder will exercise at a timenly if the market price5; of the
stock exceeds the strike pri¢eof the option. Then the holder can make a profit (or “payoff”)

!Note that although the term NPV is used to refer to the presaoewf any strategy, contingent or not, the
NPV rule found in corporate finance textbooks considers dmystrategy of investing right away. Thus when
we refer to the “traditional NPV rule”, we mean the rule thatyoanalyzes the NPV of immediate investment.



of S; — L by exercising the option and immediately selling the acquired stock at thieetna
price. Thus, at any time the potential payoff from exercising the optiomigx(S; — L, 0),
where the zero represents the decision not to exercise the option. We denote ity dpya
(S —L)*.

The option holder thus faces the question of when if ever to exercise the option n orde
to maximize the expected payoff discounted to the present time. This situadgibaypears to
be strongly analogous to the design decision-making problem faced by the software enginee
The cost of 1600 to restructure is analogous to the strike grioéa call option on the new
interface. By paying this exercise cost at timehe engineer will acquire an asset wofth
which is the expected present value of the future profit stream (e.g., reduaeeld¢osts) from
restructuring. If we let subscripts denote time in months, thgr= 2200, and 5] is either
3300 or 1100, each with probability = 0.5. Thus, the expected payoff from investing in
restructuring at the current time i — L = 600. A month from now, ifS; = 3300, then
the payoff is3300 — 1600 = 1700, and if S; = 1100 the engineer would not invest, for a
payoff of 0. Thus, the engineer can be viewed as holding a real option: She has the right
but no obligation to acquire the expected benefit oby investing/l in restructuring at time
t. Deciding the best time to invest is analogous to deciding the best time riasxéhe real
option.

Let us now consider two possible exercise strategies. Since there is ndaimiyeafter
time 1, these are the only two alternative that we need to consider. @trhts to exercise
immediately, i.e., at time 0. The payoff (s, — L)* = 2200 — 1600 = 600. Strategy 2 is to
wait one month, and exercise only if the benefit turns out to be 3300. The expected present
value of the payoff from this strategy is, of course,

(0.5/1.1) [3300 — 1600] = 773.

The analogy between options and investment decisions yields new and useful software
engineering insights. Because past economics-based approaches to softwaeriegdiage
focused on traditional NPV analysis, they have tended to ignore the need to resaded s
gically to uncertainty about the future, and they have ignored in particular the ebeing
able to wait for better information. Options analysis makes this value explicparticular,
one can define the valué of an option at any timerigorously as the expected present value
of future payoffs under the optimal exercise strategy. In our example, the Valsa&73 since
this is the expected payoff from the best exercise strategy of the two laleaila

This value can be thought of as the value of having the flexibility to wait. The ability
to change one's mind by reversing the decision not to invest, and hence the vahie of t
flexibility, is lost when the option is exercised. In a sense, the option V3luepresents the
opportunity cosbf exercising at time. It can be shown rigorously that for an American call
option, the optimal exercise rule is to exercise when the paysff— L)*, is equal to (or
greater than) the valug, i.e., whenS; = L + V,. This rule says that it is optimal to invest
when the benefit; exceeds the direct costplus the opportunity cost;.
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This example illustrates how real option theory can help quantify the value ihga
before embarking on an expensive project, such as a major software restrgcAsiwe will
see, the valu&; can be computed easily under simple models of future uncertainty.

Beyond correcting a shortcoming in the NPV approach, the real options approach has
the advantage of capturing essential aspects of software design decision-makiggneral
sense. We are continually faced with uncertain futures, with opportunities¢st, with the
right to delay investing, and with costs of both investing and of not doing so.

Having identified the analogy between software design decisions and irtdeerapital
investments under uncertainty suggests that we use the well-developed body ofdgearel
theory of real options to help illuminate software design decision-making hiesrid¢lore-
over, if the analogy between software design decision making and real optjaastfied, and
if the heuristics work, then the heuristics must at least approximate underlyiiumsfiiased
strategies. Making the underlying structure explicit promises intellectudlpgrhaps even
analytical benefits.

4 Mathematical Background

Before describing options and their connection to investment problems more fgrmal
need some mathematical vocabulary. In much of the following discussio@jrcéedious
technical conditions and definitions will be omitted.

For simplicity of exposition, we will model future uncertainty by means of a dtscre
event treeof finite depth/N, where/V represents the maximum number of future time steps
(e.g. months, years, etc) that we wish to model. We will often tski® be so large that we
can treat it as essentially infinite. Each node in the tree represetdteao$ the world. The
root node is considered to be at depth 0 and represents the present time, € €., &hmode
at depthk represents a state of the world at tifets children are the possible next states at
time k& + 1. A typical path in this tree from the root to a leaf (i.e. from tithéo time N) is
denoted by the letters or w. We writew(®) to denote the prefix ab consisting of the states
from time 0 to timek; () represents the empty path. The collection of tree patisscalled
the sample space). For our purposes emndom variable 7 is a mapping (or function) that
associates with each € 2 a real numbe¥/ (w). A randomprocessis a sequence of random
variables such a&7,, }V_,, which we will sometimes denote simply .

As an illustrative example, it is useful to have the following simplenéveee, called the
binomial tree, in mind. Imagine we toss a coil times. Each non-leaf node in this tree has
two children. If we imagine the tree branching left to right, each ofxheaths represents a
particular sequence of coin-toss outcomes. On anypatbr £ = 1,... , N, thek'th branch
is an up-branch if thé'th coin-toss comes up heads), and it is a down-branch if it comes
up tails (I'). For future reference we define the following random variables on this ti@e: F
k=1,2,...,N,we defineX, = 1, if the kth coin-toss is & and X, = —1 otherwise. We
refer to X as therandom walk process In fact, X; can be seen as representing a particle
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that starts at the origin and performs a random walk on:tlagis: at timek it moves 1 unit
to the right if X;, = 1 and 1 unit to the left otherwise. Thositionof the particle at time: is
given by the random variablg, defined byY, = 0, and

k
Yo=Y X
=1

With each branch in an event tree, we associate a probability, so thaunief the prob-
abilities of the branches emanating from a given node is 1. For instance if we fi@veain
in the coin-toss example above, the probability of each branch is 0.5. Fdr, amgl any path
w, the probability of thek-prefixw®), denotedP(w®), is computed in the obvious way: Mul-
tiply the probabilities of the: branches in.*). We define the probabilit?(w) of the entire
pathw in the same way. Thexpectationof a random variableéX, denotede(.X ), is defined
as

E(X)= Z X(w)P(w). (1)
wef)

We will need to use the generalized random varigbjedefined as follows. For any path
w € O, Fr(w) = w®. In other words, the functiotF, associates with any path ¢ Q
its k-prefix ¥, 1t will be useful to think of 7, as representing the “information up to time
k”. Thus F; represents a “state of the world” at time A random variableX is said to be
Fr-measurableif for any pathw € Q, X(w) only depends on(®). More precisely,X is
Fr-measurable if for any pair of paths o € Q, w® = o¥) implies thatX (w) = X(«). For
instance in the coin-toss example, if the random varighleepresents the number of heads
up to timek, thenH, is F,-measurable, fok = 1,2,... , N. Similarly, the random variable
Y. (the number of heads minus the number of tails by tifheés F,-measurable. A random
process| X}, is said to beadaptedif for £ = 0,1,2,... , N, X} is F,-measurable.

The concept of conditional expectation is an important one for this paper. Let us imagine
we are in a particular state of the world at timerepresented by the value of the random
variableF . In other words, we are on some patand we knowF(w) = w*), Now suppose
we want to compute the expectation of some random varighdéeventhat we are in staté& .
Clearly this expectation will in general be different frdg’, and will depend o®). For
example, in our coin toss example, supposeés the random variablé’,. If «*) consists
only of heads then the expectation Bf given «®) will be higher than ifw® contained
only tails. We compute the expectation 8f givenw®), in a manner similar to expression
(1): The difference is that we take the weighted sumXdtx) only over pathsy such that
o®) = w® and we only weight each terrii(«) with the product of the probabilities of the
branches ofy that are takemfter time . This probability-product is simpl?(«)/P(w®).
Then theconditional expectationof X given F; is denotede( X |F;) and is defined as the
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(Fr-measurable) random variable that maps any path(? to

2 e Pla)X(a)
o= (¥)

P(w®) ’

which is just a form of the familiar Baye's rule. The conditional expectaON |F;) can
be thought of as the expectation ®fgiven that we have all the information up to tirhgor
given the state of the world at tinie

For a random variabl&, it is customary to writg X = z} to denote the set of paths
such thatX (w) = =. For any set of pathsl, /4 is a random variable called thedicator
function for A, and is defined as

1 if we A,
I —
a(@) {0 otherwise.

A stopping time 7 is a random variable taking integral values in the rafigeV], such that
for eacht = 0,1,... N, I;,—, is Fy-measurable. In the coin-toss tree, an example of a
stopping time is

() {min{k > 0:w® contains 3Heads if such ak exists,
T(w) =

N otherwise.

This stopping time can be viewed as specifying the following rule: stop whenadinehas
landed heads 3 times. Note that if we happen to stop atkiorea pathy, i.e.,7(w) = k, then
for anypatha with o®) = w*) we haver(a) = k. Thus a stopping time is a non-clairvoyant
decision rule of when to stop, and in this sense models real-world decisiomsukbe made
in the absence of information about the future. We remark that “stopping” is justaiciemt
metaphor that could represent any action for which we are studying decision rules

5 Financial Options

We now describe some basic concepts in option theory. For further details wéhefeader
to Hull's introductory text [18]. For a rigorous treatment, consult Merton's sdmwioik [23].

The simplest kinds of options are call options. American call option on a certain
stock is a financial contract with the following features: it gives the hatdiéine contract the
right but not the obligation to buy a share of the stock at a fixed price calledttike (or
exercisg price L from the writer (seller) of the contract, on or before a cer@xpiration
date of7" time units. The holder thus has the “option” of deciding whether or not to exercise
the contract, i.e., demand a share of stock from the contract writer atrike gtice L. This
is why the contract is called an option. When the option is exercised or the oppoeg the
option ceases to exist. Thus option exercise is irreversible.
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The variable underlying the option is the price per share of the stock specifieddnrthe
tract (hereafter the “stock price”). Itis common in finance to model spoides as continuous-
time stochastic processes that follow definite trends that are disturbedbmnBin motion. A
Brownian motion process is commonly used in physics to represent the motion dicepar
that is subject to a large number of molecular shocks and that might also be subiggrce®
exerted by a field in which the particle is embedded. The field accounts fowénalltrend;
the Brownian motion for a superimposed uncertainty.

This continuous-time process can be approximated in a rigorous sense by a disoeete-t
process called thbinomial model [7], defined as follows. The stock price process can be
visualized in terms of the binomial tree introduced in the previous section. € bf the
option is divided intoN time steps of lengti\¢ = 7'/N, and timek in this discrete model
corresponds to continuous-timé¢. The stock price attimgis Sy, so thatS, is non-random,
andsSy for & > 0 israndom. At each time step, the stock price either moves up by a faotor
down by a factod /«. In terms of coin-tossing, we can associate an up-tick of the stock price
with the coin landingH, and a down-tick with the coin landing. In terms of the random
variableY}, introduced earlier (the number of heads minus the number of tails byijmtne
stock price processS;, is given by

Sp =S, k=0,1,2,... ,n.

The probability of an up-tick ig; the probability of a down-tick i = 1—p. When parameters
p andu are chosen appropriately, it can be shown that the binomial model for the stoek pric
approaches the above continuous-time modeé¥ asoo [7].

In order to discount future cash flows to the present time, we will need torasshat
money can be borrowed or lent (for example, via a bank or government bond) at a risk-free
interest rate of. Thus a dollar lent or borrowed at discrete tities worth ® = 1 + » dollar at
time k4 1. Itis common to refer tar as adiscount factor since a dollar at timé, discounted
to the present time (i.e. time 0) is worthi R*.

Now let us return to the description of the American call option in term$iefltinomial
stock-price model. It is clear that the holder should not exercise the optionat ten/V if
S, < L. On the other hand, if, > L, the holder might but is not obligated to exercise the
option; and if she does, the option writer is obligated to sell her a share of sttio& strike
price L. The holder could then immediately sell the share in the market aand make a
profit of S, — L. Thus the profit that can be realized from an American call option at time
is max(S; — L,0), which we refer to as thpayoff ¢, from the option. Again, for any real
numberz it is standard notation to writet for max{x, 0}, so we can write the payoff as:

Gr = (Sp— L) )

Since the option holder never takes a loss from holding an option, it has a value for the holder
if there is any chance that it might ever be exercised for a profit. It itbez not surprising
that the holder must pay a certain price to the seller for owning the option. Optivevalae,
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and trillions of dollars worth of this and many other kinds of options are traded aeiiyrld
financial exchanges.

What is the best exercise strategy for the holder of an American call opteheiis still
holding it at timek? As mentioned in the last section, any non-clairvoyant exercise strategy
can be described by a stopping time For instance the strategy of exercising immediately
(at timek) is defined by the constant stopping time- £. As another example, the strategy:
“exercise when the stock price exceeds a certain threskipls described by the stopping
time

r=min({N}U{m € [k, N]: S, > A}).

If the holder of the option exercises immediately, she will obtain a payoff- L)*. If
she exercises at some future time> £k, the payoff would b€ S,, — L)*, which is worth
(S,, — L)*/R™* at timek. Depending on the value of,,, this could be smaller or bigger
than the payoffS, — L) from immediate exercise. The stock prigg at the future timen
is of course uncertain and cannot be predicted.

For a given exercise strategy (stopping time)> £, the expected present valuéﬂ
can be computed as follows. The payoff upon exercise attimé¢s, — L)*, which is worth
(S,—L)* R*—™ attimek. Therefore the expected present value of the payoff from this exercise
strategy, given the information up to tinkas

Vo g ((ST R

fk), T > k.

Our option holder would of course want to choesso that this expectation is maximized. We
denote this maximum by,

_ (7)
Vi = ry;g% : ()

Thus the valud/,,, which we loosely refer to as the “value of the option at tilfigis the
best expected present value at titneealizable over all possible exercise strategies. We note
in passing that in option pricing theory, the “fair value,” or fair trading priof an option is
defined by assuming the absence of arbitrage. That is, the fair value of the oghenvedue
at which it can be traded so that there are no opportunities for unlimited ssgi®fit.

More specifically, fair value is defined as the value of a dynamically updatefbpothat
replicates the random fluctuation of the option pay@fft The replicating portfolio consists
of the underlying asset, namely the stock, and risk-free bonds. It turns out that ttnegerbi
free fair value of an American call option is defined justigsabove, but under a specific
artificial probability measure called the risk-neutral measure that isex#ssarily the “actual”
probability measure. However in the case of real options, as we willlsee@yderlying asset,
which represents expected future profits, only exists as a result of ergrti® option, and
is not traded independently. This makes the option-replication approach to valleggon
compelling for real options. Also, since real options themselves are not traited, ave
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are not so much concerned with their fair value, as with how to exeroesa pptimally—i.e.,
with maximizing the expected discounted payoff under the actual probability me&suthe
purpose of determining the optimal exercise policy, therefore, we can take iba valueV;,
to be defined as above.

Since immediate exercise is a valid strategy at any timenust be at least as large as
(Sg — L)*. Infact, if (S, — L)t < Vj, this means that the immediate exercise strategy is
not optimal, and that some other strategy will yield a strictly greater exgoeptesent value
of payoff under our assumed stock price model. Thus, in this situation it is beneifoti&d
exercise but to wait. On the other hand($f, — )™ = V}, then there is nothing to be gained
by waiting, at least under our assumed stock price model. In this case it isabpdiexercise
immediately. Indeed it can be shown rigorously that the stopping tirtteat achieves the
maximum in (3) above is given by

r=min({N} U {m € [k,N]:V,, = (S, — L)"}). (4)

Let's look at the optimal exercise rule from a cost-benefit viewpoint. Welaak of the
strike pricel as the “cost” of exercising the option, since this is the price one must pay to
obtain a share of stock. Similarlg,. is the benefit from exercising at time since this is
the price one would obtain by selling the stock in the market. We just remarkee aitoat it
may not be optimal to exercise as soon as the befigkixceeds the cogt. To see this, it is
useful to view the option valu®, as representing the value of the choice to exercise. When
the option is exercised, the option (and the choice) is killed and this valuetjstothatV;,
represents the opportunity cost of exercising the option. Thus exercising the optios tvwo
costs: thalirect cost L, and the opportunity cost,. From the discussion above, the optimal
exercise strategy is to exercise wheéh — L)* = Vj,, which in cost-benefit terms can be stated
as follows:

Exercise only when the benefit equals or exceeds the direct castplus the
opportunity cost/;.

This is the viewpoint that we will find most useful in this paper.

The valueV,, can be computed for all by a simpledynamic programmingrocedure (see
[6]) as follows. First observe thdty = (Sy — L)*. This is clear both from formula (3)
and from observing that the since option expires at tishehere is no advantage to waiting.
Now stepping backward in time on the binomial tree, we compute any state of the world
(given by F}) using the formula

Vi = max{(S), — L)"', E(Vis1|Fr)/ R} (5)

In other words, the option valug, on a pathw is the maximum of the immediate payoff
(Sk(w) — L)* and the expected present value of the option value one time step ahead, given
that we have seen the preff,(w) = w® so far. It can be shown that this backward-recursive
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formula for V,, and formula (3) are equivalent. And this is true regardless of the specific
process that the stock pri¢e follows—thatis, even if5;, does not follow the binomial model
assumed here. This fact will be useful in our application to software enggegecisions,
since the analog dof;, in those applications does not necessarily follow the binomial model.

6 Real options

Now let us consider a problem of making an irreversible capital investnmetita face of
uncertainty. Once again we will assume we are working in a discrete eeenot depthV.
Suppose a firm is faced with the decision of whether to invest in a factompéiing a new
type of disk drive. The investment is irreversible, since the factoryardy be used to make
these disk drives, and if market conditions turn out to be unfavorable, the firm cagzonr
its lost investment. For simplicity let us say that the factory can bk imstantaneously, at a
cost/L, and that it can produce disk drives forever at zero cost. Once the factomltissay
at discrete timé:, the disk drives can be sold at the prevailing market price. The future profits
from disk-drive sales depend on how the market price evolves, which is unmcertai

Let S;. be the expected present (i.e. timevalue of these future profits, under a suitable
market price model, probability measure, and discounting factor. Fhuspresents the value
of the asset that the firm can acquire by exercising its option to idvastimek. Alternatively,
one can think of5;, as the benefit from making the investment at tilp@nd L as the cost of
the investment. Clearly the firm will not invest in the factonijf < L.

On the other hand, should the firm invest simply becatjsexceeds.? The traditional
NPV rule says “yes.” However, as argued by Dixit and Pindyck [9] and others rdhe is
flawed since it treats the decision problem as a now-or-never proposition. sThiathere is
no possibility of delaying the decision, then the rule is indeed reasonable. Howewe
decision to invest can be postponed, then the NPV rule ignores the value of waitinettier
information before making the investment.

The option viewpoint is the natural framework in which to quantify the worth of the fle
ibility of being able to choose between investing now and at a future time.e linterpret
the benefits, as the stock price, and the direct investment dosts the strike price, then
investing in the factory is analogous to exercising the American calbopiihus the valug;,
represents the value of the option to invest, or the opportunity cost of investimgedt. The
reason we think o¥;, as an opportunity cost is that when we exercise the option, we lose the
right to choose when to invest. In analogy with the above rule for an Amecathoption, the
optimal rule for the firm given suitable definitions 8f andV;, is to invest if the asset value
(or expected benefity, exceeds the direct cost of the assgeplus the opportunity cost;.
This idea is at the heart of the theory of real options.

There is nothing in the above discussion that is specific to capital invesgmeade by a
company. The approach applies equally well to any investment situatiorewagthere is
an expenditure of limited resources, (b) there is uncertainty over the futofiégtility of the
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investment, (c) the decision to invest is irreversible, and (d) thesdeccan be delayed.

As we argued before, many software design decisions satisfy theseacritergeneral
suppose a software engineer is contemplating whether to commit resourcesctaefértain
design decision. In terms of the variables introduced above, the direcf.dsghe cost to
effect the decision. The future profit stream is uncertain, depending on factbrasahanges
in requirements, hardware, usage-patterns, etc. Once a decision tosnefscted, it cannot
be reversed. And investing can often be delayed.

The uncertainty over future benefits can be modeled as before in terms ofrarireee At
a discrete timé:, the asset value or expected bengfitis the expected value, discounted to
time &, of the future profit stream that would result if the design were already irefigtime
k . The option valué/, is the opportunity cost of implementing the design—the value of the
lost flexibility of being able to decide when if ever to implement the design.

Therefore, as in the capital investment scenario, the optimal decisaiagy for the soft-
ware designer is to invest in the design when the expected beéhefjuals or exceeds the
direct costl plus the opportunity cost,. We thus have a rigorous way to quantify when it is
beneficial to delay a decision to invest in a software artifact, dedggign change, etc. In the
next section, we illustrate the approach in more detail with an example congex decision
about whether to restructure a software system to impose a new information imt#irfgce.

7 Applying Options Thinking to a Restructuring Decision

To illustrate our arguments, we will analyze a simple example of a softwaigrddecision:
namely, when if ever to invest the resources needed to restructurev@smflystem to improve
its information hiding properties. We consider a problem in the domain of softvganets on
the internet [20, 24, 33].

Agents are autonomous software entities that specialize in certain &eskexal agents are
already in place on the World Wide Web. For instance, information agents cathelgueries
such as, “What is the lowest cost airplane ticket from Charlottesvillitisburgh today?”
There are news reading and filtering agents. There are also shopper agerds tedrch for
a good bargain on a compact disc. Given the vast size of the internet, it makesy@c sense
for agents to use other agents to accomplish their goals. For instance, a firnporthalio
management agent could use another agent to obtain company reports.

Thus, each agent has a certaapability,and one agent might need to find other agents
with needed capabilities. We imagine that the capabilities of availa@ata are stored in a
capability directory. In the vocabulary of information hiding, the contents of the capability
directory are likely to change and should thus be made the “secret” of a module.

Suppose that a software engineer is deciding whether or not to make the directorysontent
the secret of a module. Specifically, he is deciding between the followingviays to design
this directory:

18



D: Distributed directory. A copy of the capability directory is hard-wired in the code of each
agent. An agent that wants to find another agent with a given capability can consult
its local directory at essentially O cost. This approach exposes the diyeutbich
is likely to change, to all the agents, and thus does not follow the information hiding
design criterion very well. Consequently, whenever an agent is added to tieensys
the directory in each agent must be changed. The absence of an information hiding
module magnifies the cost of changes owing to the distribution throughout the system
of dependences on volatile information. We denote the total cost of the code changes
required when an agent is added at timey the random variabl®,, .

C: Centralized Directory. There is one designated agent calledybdow pagesgent that
implements the capability directory. All other agents access directaryrirdtion through
an interface of this agent. This approach employs information hiding since the new
agent hides the aspect of the system judged likely to change. Wedehote the to-
tal cost of initially hard-coding the centralized directory and its assediaterfaces.
When a new agent is created, the yellow-page agent needs to be changed. Also, an
agent requiring a certain capability needs to query the yellow-page agent.t Ve le
random variabl€’, denote the total query and update costs at time

Which approach should the software engineer choose? Suppose, first, that there is no de-
sign already in place and no agents to start with. In this circumstance, thbesystem has to
be built, the engineer does not have the flexibility to delay deciding. The choice ameng al
natives has to be made for the system implementation to progress. Here \frepii®ach is
justified.

In order to compare choices C and D, we can assume that the costs that are ctammon
both approaches are 0. The only relevant costs aaad (', for choice C, and),, for choice
D. In fact we can view the problem as one of deciding whether or not to use choice C, and
express the costs and benefits relative to choice D. There are two quanftinésrest when
choice C is compared with choice D:

e The direct cost of choice C, i.e., the immediate cost of implementing it,jwkit = C'.
e The monthly profit of choice C relative to D in monthfor » > 0, which is B,, =
D, —C,.

We view the software design problem as an investment decision problem: Shaoiald
lars be invested in choice C? Let us assume a discount fattoConsider the traditional
NPV approach to this problem. To apply it, we first compute the expected predeatSya
(discounted to time 0) of the stream of profits, » > 0 from the investment:

So = Z EB,/R", (6)
n=0
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which we refer to as the expected benefit of choice C relative to D at tifile@NPV of the
investment at time 0 is
NPV =5,—L =5 —-C.

The traditional NPV rule states that if the NPV is positive, then the tmrest should be
made, otherwise not. Thus a reasonable decision rule, when there is no desaghwatist is
the following:

If the expected present value of the future prdafitshat would flow from choice C
exceeds the direct cost of implementing it, then go ahead and implement choice
C, otherwise implement choice D.

As noted by Boehm [3], this kind of rule is often used by software engineers, iithplhe
explicitly.

But now we ask a different question, and one likely to arise given that so muthasef
engineering activity is in maintaining existing systems rather than desigr@wgones. Sup-
pose there is already a system with several agents in place, that thieutiestrdirectory was
implemented (choice D), and the software designer is contemplating whethertorine¢st
in restructuring the system so as to switch to choice C. In addition tao$t€ ‘cof creating the
yellow pages agent, there is a costof scrapping the distributed approach. Each agent must
be changed so that it queries the yellow pages instead of its own local diretihmythe total
direct cost of choice C i8 = C' + C*. Given these costs, how should the engineer decide?

It is tempting to propose the following rule (compare it with the previous rule):

If the expected present value of future profitsthat would flow from restruc-
turing exceeds the direct cost of restructuridg,then go ahead and restructure,
otherwise do not.

However as we noted before, there is a serious flaw in this analysis. It cespaly two
choices: switching to choice C now or never. In the case where there was go destart
with and one was required, the engineer was forced to decide between choiceBCléuede
was no flexibility to delay making a decision. The decision was now-or-nendrilee NPV
rule was appropriate. However, in the restructuring situation the desigsethbaoption to
wait in hopes of being able to make a better decision in the future.

The flexibility to wait has value that is lost once the designer exercises tiomaptrestruc-
ture. The designer cannot reclaim the resources invested in restructumiply ¥y changing
her mind. Thus, in addition to the direct cast there is an additional opportunity cost to
investing that represents this loss in flexibility. Therefore, at amg#, the value of the ex-
pected profits discounted to tinkg(i.e., S;) must be sufficiently higher than the direct cdst
to justify switching. In short, the designer should compare the value of investvwgat time
0) versus investing all possible future times. She should really be askiigenif ever to
make the investment in restructuring.
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We emphasize again that this situation is similar to that of a managegfaaiecision to
invest capital in new plant and equipment, which, in turn, is analogous to theatetasing
the holder of an American call option on a stock. At any timéhe designer/manager/holder
has the right but not the obligation to invefst(the exercise price of the option) to receive a
stream of profits with an expected present vabygthe stock price). Exercising the option
kills the investment opportunity, just as in the case of an American option.

Let us define the random variablg to be the expected benefit of restructuring at time
k (the asset value at timg), i.e., the expected value of the future profit stream resulting
from investing at timek, discounted to timé. We computeds, above, and the payoff from
exercising at time 0 i, = (S, — L)*, since one would not invest H, < L. Notice that this
is the same as expression (2) for the payoff from an American call option onlkaagtbme 0.

Sp Is analogous to the stock price at time O—thus our choice of notation.

How do we generalize the expression (6) frto time £? To compute the benefi;, at
time k£, we proceed as in expression (6), except that we discount the profits td tratber
than time 0. We also replace the expectation by the corresponding conditional &xpecta
conditioned onF;. Finally, we only perform the summation from timégo oco. ThussS; is
given by the following expression:

Sy=>E [Ban‘”
n==k

Fil. (7)

Note that, unlikeSy, S} is a (F,-measurable) random variable. The expected benefit of re-
structuring to institute an information hiding yellow-pages agent at finsethen

Gk = (Sk - L)+7 (8)

which is the same as expression (2) for the payoff from a call option. The Valoé this
option represents the value of the investment opportunity, which would be lost ifene to
exercise at timé. As described in Section 3}, can be computed for any using dynamic
programming. Also, we mentioned that it is optimal to exercise the option wheratheV,
equals or exceeds the pay6ff. Thus it is optimal to switch to choice C wheéh — L > V,,
or

S > L+ V.

Informally, we should exercise our option to switch to choice C when the benhastat least
as much as the sum of the direct cédsand the opportunity cost;. Thus our new design
decision rule for the software engineer is the following:

If at any timek, S, the expected value discounted to timef future profits
that would flow from restructuring, is at leag} more than the direct costs of
restructuring, then go ahead and restructure, otherwise do not.
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8 A Numerical Example with One-Period Uncertainty

We make our analysis of the restructuring decision concrete by means of a nurexaicgdle.
Suppose the cost to restructure is 9000, and the castof scrapping the distributed directory
structure is 1000. Thus the total direct césof restructuring is”' + C'* = 10000.

To keep complications to a minimum, we assume that building the yellow-page agent
and scrapping the distributed directories takes O time. Each discmetestep in our model
represents 1 month. Timerepresents the beginning of théth month, forn = 0,1,2,....
Let us imagine that during the current month, or month O, several new agents willdiedre
and that the associated updating cost under the distributed apprdachk-i2000. We assume
that the total query/update cost under the centralized approagh4sb00 at all times:. Thus
if we move to a centralized directory at the beginning of month 0, the monthly poofindnth
0 would be

By = Do — Cy = 2000 — 500 = 1500.

Suppose an agent development technology is being deployed this month, and there is a
probabilityp = 0.5 that it will succeed and be widely accepted. If it succeeds, several new
agents will be created each month, starting with month 1. This outcome isafdedfor
approach C and we will therefore superscript variables under this scenahitheiletterf.

In particular, we suppose that in this situation the total update cost assbaidieagent
creations under approadh, is D/ = 3000 for all » > 1. (It becomes expensive to accom-
modate the changes owing to the inadequate hiding of the aspect of the system that turned
out to be volatile.) On the other hand, if the technology fails, very few new agaftsaev
created, a situation which is unfavorable for approach C, since the expensdaifisgito a
centralized directory will not be compensated by the cost-savings of the inforntatling
restructuring. Thus, we superscript variables in this scenario by the deti&e suppose that
the corresponding update cost under choice D in this case is much low#f,-at400 for all
n > 1.

Thus from month 1 onward, the monthly profit from restructuring for information hiding
would be

B = DJ — C, = 3000 — 500 = 2500, n >1

in the favorable scenario, and
B = D' —(C, =400 — 500 = —100, n >1
in the unfavorable scenario, each case occurring with probability 0.5. Therébor. > 1,
EB, = EB, = pB{ + (1 — p)B¥ = 0.5(2500 — 100) = 1200.

Our model is represented by the event tree in Figure 1. There are just two pgsathk in
this event tree, which we denote by (favorable) andv,, (unfavorable). Note that for > 1
andn > k, on the favorable path,

E(B,.|Fx)(ws) = B = B] = 2500,
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B = 2500 B = 2500

1 — 27500 sf = 27500
By = 1500
So = 13500
B = —100 By = —100
S¥ = —1100 Si = 1100

Figure 1:Event tree for the numerical example

and on the unfavorable path,
E(B.|Fi)(w,) = BY = By = —100.
Assuming a monthly discount factor & = 1.1, let us calculate the benefit of switching
attimek. Fork = 0, we use expression (6) to compute

So = io: E(B.)/R"

= By + i E(B))/R"

n=1
= By + E(By)/(R—1) 9)
= 1500 + 1200/0.1
= 1500 4 12000 = 13500.

Fork > 1, from expression (7), the benefit from switching at titnim the favorable scenario
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(or on the favorable path) is

S = 3" E[B,IFil(ws) B

n=~k

=3 B{RF" (10)

n==k
=S B{/R" (11)
n=0
R
- Bt

'R-1
= 2500(1.1)/0.1 = 27500,

(12)

which is bigger than the direct cost= 10000. Thus in the favorable scenario the expected
benefit of switching is always greater than the cost. Similarly,

R
Sy = Bfﬂ = —100(1.1)/0.1 = —1100, %k >1, (13)
which is smaller than the direct cost= 10000, so in the unfavorable scenario the expected
benefit of switching is smaller than the cost. Note that from the definitioﬁg,cﬂ’{ andsS} it
follows that

So = Bo+ (p/R)(S{ + S). (14)

Given this model, should the software designer indest 10000 and restructure in order
to switch to design C now, or would it be better to wait for a month and invest ibhe
situation favors a switch, i.e. only if the new technology succeeds, makingaircéhat many
changes will be needed? Since there is no uncertainty beyond the first month, thdee are t
only two strategies worth considering.

We first approach this question by computing the net present value of these twgissat
The NPV of Strategy 1 is

NPV(1) =5y — L = By+E(By)/(R— 1) — L = 13500 — 10000 = 3500.
(15)

Since the NPV is positive, the NPV rules indicates that the designer should go aitba
the investment. This reasoning is flawed, as we pointed out before. It ignores atuniyor
cost: that of waiting for information and keeping open the possibility of not invgsftithe
technology fails. This opportunity is lost by investing now.

Let us calculate the net present value of investing under Strategy 2: Wait oné&,mont
and invest in switching to the yellow-page agent only if the technology succeats t8e
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technology succeeds only with probability= 0.5, the net present value of Strategy 2 is

NPV(2) = (p/R)(S{ - L)
R
= (p/R) (B{ﬂ — L) = (0.5/1.1)(27500 — 10000) = 7954, (16)

which is significantly greater than the NPV of investing immediatelysTtearly shows that
it is better to wait.

We now approach the question by computing the valuef the investment opportunity
at timesk = 0 andk = 1. The payoff if we exercise our option to invest at tirhés given
by G, = (S, — L)* which is identical to the expression for the payoff from an American call
option. Since there is no uncertainty after time 1, it is easy to sedthatG) = (S, — L)*
forall £ > 1. In particular, if the technology succeeds, the option value at time 1 is

v/ = (8] — L)t = (27500 — 10000)* = 17500, (17)
and if the technology fails,
Vi = (5S¢ — L))" = (=1100 — 10000)* = 0. (18)
From the backward recursion (5) we conclude that
Vo = max{Go, (1/R)E(V1)}
= max{Glo, (1/R)(pVY + (1 — p)V}")}
= max{(So — L), (p/ R)(S{ - L)} (19)
= max{ (Bo+ E(B)/(R— 1) = 1), (o R) (B{R/(R-1)= )"} (20)

= max{3500, (1/1.1) x 0.5 x (17500 4 0)}
= max{3500, 7954}
= 7954. (21)

Notice that the values 3500 and 7954 in thex above are exactly the NPVs of strategy 1
and strategy 2, respectively. Als, > Gy = 3500, so it is not optimal to invest right away.
However, after 1 month, if the technology succedds= G, = 17500, so it is then optimal
to invest at that time. Thus we have shown in two different ways thaegly& is optimal. In
general when the uncertainty lasts for several periods, the approach of comp&irsyfor
the exponentially many possible strategies is impractical. The second dypergiamming
approach from option pricing theory would be the method of choice.

9 Qualitative Design Principles

In previous sections we showed how to view a software design decision as @nletisut
when if ever to make an irreversible capital investment in the faceoértainty. We presented
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an important analogy, drawn by others, between investment decisions and dptimglof
decisions to exercise call options. We thus linked software design decisikingna the
theory of options. To the extent that the analogy is valid, we can expect options theory to
provide insights into software design decision-making.

In particular, we believe that options concepts provide intellectual tools #mahelp us
to better understand and to hone our software design decision-making heuristicgatélly,
the theory of options, perhaps in conjunction with other advanced economic theories, might
provide a firm foundation for what today remain informal and hard-to-grasp conceptasuc
“information hiding,” “delaying of design decisions,” “design for reuse,” and so on.

To strengthen the case for the claim that options theory can help us to think abou how t
make design decisions, in this section we focus on how key parameters influenaomgsopt
values affect corresponding software design decisions. In so doing, we seleBwassft-
ware designers how concepts from options theory can be brought to bear in software design
decision-making situations.

We do this in the context of the numerical example presented in the last sectipar-I
ticular, we study how the value of the option to restructure depends on the unceaaanty
the benefits of investing, the profitability of switching, and the probability of arfabvle out-
come, as well as on the direct cost of the design chdnd¥e go on to show how the options
approach reveals that the designer is not only an investor in concrete assgt$ubure op-
portunities. Options theory gives us a new view of the depth and complexity of the @ituati
facing the savvy software designer.

Recall that the scenario where the technology succeeds was deemed favaredsérfic-
turing because, in that scenario, the expected befigfif restructuring at time 1 exceeds
the direct costl. (expression 12). The scenario where the technology fails is unfavorable for
restructuring because in that scenario the expected befjett switching at time 1 is less
thanZ. In the following subsections, as we vary parameters, we continue to assume

S{>1L>8

so that the two scenarios retain their favorable/unfavorable status.

9.1 Effect of Direct Cost

From expression 19, we notice that the valgeof the option is the maximum of two quanti-
ties: the NPV of strategy 1, name(l§, — L), and the NPV of strategy 2p/ R)(S] — ). Note
that sincep/ R < 1, asl decreases, the former NPV increases faster than the latter. Thus, if
all other parameters remain the same, there is a critical value falirthet cost. below which
it is optimal to restructure immediately, i.e., at time 0.
Another way to state this principle is that if the direct casis sufficiently low, the cost
of waiting (the profitS; — . one would forgo) outweighs the value of waiting (the valge
of the flexibility to reverse the decision not to invest). Since there is ngtBpecial about
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time 0, this statement applies at any time. Thus we provide a rigorous, opticretibel
justification for the following software design guideline:

If the cost to effect a software design decision is sufficiently low, then tiedibef
investing to effect it immediately outweighs the benefit of waiting, so thaatecis
should be effected immediately.

Although this design decision-making rule of thumb seems obvious, it contradicts a-heuri
tic that one of the authors has heard promulgated on numerous occasions by recognized soft-
ware experts, and which we cited at the beginning of this paper: Always delaypgdé&sign
decisions until you are forced to make them because they block progress on all ottisr fr
The plausible reasoning behind this rule is that you should wait until all possible iafam
is in before investing. The options approach shows that this rule is wrong in ge@g@tadns
theory also gives us a way to make precise the appealing notion that by reducisgeast
technologies, such as restructuring tools [15], can toggle a situation from onleich Wwis
best to delay to one in which immediate investment is optimal.

The options interpretation of software design decision-making teaches us that we a
the much more difficult position of having to strike a balance between the value loétiedits
of investing immediately to have an asset now and the value of the flexilm§t when we
make the irreversible decision to invest—and that that balance depends on afréaxgers.

9.2 Effect of Uncertainty over BenefitsB,,

In the numerical example of the previous section, the two possible valuBs tdr n > 1
were B/ = 2500 in the favorable case andl* = —100 in the unfavorable case. Now suppose
we keep all parameters the same, except that we chBpage 3000 and changé3® to —600.
Notice in particular that the expectation Bf,,

E(B,) = 0.5 x (3000 — 600) = 1200, n > 1,

is the same as before, but that tregianceof B, is larger. This new parameterization models
greater uncertainty about the rage of future benefits without any change in the neeexpect
benefit, i.e., a “higher risk, higher return” project.

Since the expectation remains the same, the NPV of Strategy 1, (“restratttime 0”),
given by expression (15), is the same as before, because (see expression 9)dieel drqresfit
Sp of switching at time 0 depends only on the expectation of g3cHOn the other hand, if the
software engineer waits for 1 month and switches only if the situation is d@e(Strategy
2), the net benefif,{ (see expression 12) is

S =B{R/(R—1)=3000 x 1.1/0.1 = 33000, k> 1,

which is bigger than the previousj value of 27500. Thus the NPV of Strategy 2 (see expres-
sion (16)) is bigger than before.
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This shows that the incentive to delay the decision to invest in restingtuncreases with
project risk, manifested as uncertainty over future bendfjisas long as all else, notably
the expected benefit, stays the same. Intuitively, this makes sense. Ttez treaincertainty
over the value of a manual—i.e., the greater the volatility in potential outserthe greater is
the incentive to wait for better information before investing resourcath #ll else remaining
the same, the value of options increases with the volatility of the value of thelyindeasset.

To make the idea concrete, consider the options formulation of our design problem. The
expected payoff of restructuring immediately is the same as before sincalineskE (B, )
are the same. However, if restructuring is delayed, then one of two outcorogsotn the
unfavorable case (see (18)) the paydff is still zero, because the design option will not be
exercised. However, in the favorable case, the paypfi(see (17)) is greater than before.
Thus the option valu&j given by (19) increases.

In other words, the opportunity cost of restructuring immediately is greateratisdse
remains the same, so there is more incentive to wait. Thus we can conchixdéeviollowing
gualitative design guideline, which seems intuitively natural, but whicthaxe now given a
sound formal justification in terms of real options theory:

With other factors, including the NPV, remaining the same, the incentive to wait
for better information before effecting a design decision increases with theg-unc
tainty about (the volatility of) future benefits.

Conversely, as uncertainty about the future value of a software asset diesnis becomes
ever clearer whether or not it would pay to invest. In the limiting caseadrtain future, one
can decide immediately whether to invest or not based on the NPV. If a manexdrémely
likely to be profitable, under our model there is little incentive to wait taewt. Similarly, if
its value is clearly minimal or negative, a decision not to invest can &genmmediately.

9.3 Effect of the Probability of a Favorable Outcome

In the example of the previous section, we assumed that at time 0O the likelihoods @itk
and unfavorable outcomes were equal, wite: 0.5. This probability distribution represents
the risk that the favorable outcome will not be actualized. We now examine hovakinely
of the real option depends on that probabifitgf a favorable outcome.

Consider the payoft/, = (S, — L) from immediate exercise, i.e., the NPV of strategy 1
(see expression (14)):

Go = Bo+ (pS{ + (1 = p)Sy)/ R — L = (p/ R)(S{ = S}') + Bo — St/ R — L.

If we plot (7, againsty the slope would b¢S{ — S¥)/R. The discounted expected value of
the optionV; is thus (expression 19)

EVi/R = (p/R)(S{ - L).
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This is the NPV of strategy 2. If we plot this value againstve find the slope to b@S’{ —
L)/R. Since we have assumed < L, we see that as we incregsethe NPV of strategy 1
grows faster than that of strategy 2. Thus as the probabibfya favorable outcome increases,
at some point the strategy of investing right away becomes optimal. To putetehfiy, as
the risk of a unfavorable future decreases, so does the incentive to wait.W&/¢hlia given a
rigorous basis for the following design decision-making heuristic:

The incentive to wait before investing varies with the likelihood of unfavorable
future events occurring.

Notice that this decision-making heuristic addresses uncertainty and resklififerent way

than the previous rule. The previous rule addresses the variance in the payoffs ureter diff
ent outcomes. This rule addresses variation in the uncertainty about the likelibiootisre
events that influence outcomes. We have thus identified two important and orthogonal di-
mensions of risk and have presented heuristics with rigorous theoretical undegsrior
reasoning about and responding to them.

9.4 Effect of Uncertainty over Direct Cost

In the example of the previous section we assumed that the direcL cafstestructuring is
fixed and known at all times. We now examine the possibility of the Eastthe future being
uncertain. This aspect of uncertainty is critical in software engineerspgaally if delaying
design decisions is an accepted strategy: It goes to the question of estipraijiect costs
at future times. Uncertainty about costs might reflect uncertainty aboutbuay of skilled
labor in the future, or about changes in technology, such as the development of automated
restructuring tools that could significantly reduce costs [15].

To simplify matters, let us assume that the monthly prBfittrom restructuring is 1500 at
all timesn > 0 (there is no uncertainty in this regard). Thus the expected benefit of switching
at timek, for any & > 0, is given by an expression analogous to expression (12) (in either
scenario):

R
Sk = By = 1500(1.1)/(0.1) = 16500, & > 0.

However, now assume that the direct céstat time 0 is known to be 10000, but that it
is uncertain at time 1. Let us assume thatis eitherZ/ = 5000 (a favorable situation) or
L} = 20000 (an unfavorable situation). The NPV of strategy 1, investing now, is

NPV(1) =S5y — Lo = 16500 — 10000 = 6500,

which is positive. The traditional NPV rule suggests switching right away.iighis rule is
faulty because it ignores the contingent, option strategy: Wait a month, and swijcth e
direct cost isL] = 5000. The NPV of this strategy is

NPV(2) = (p/R)(S1 — L) = (0.5/1.1)(16500 — 5000) = 11500,
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which considerably greater than the NPV of the first strategy. Thus it is optonaait a
month in this case before deciding whether to invest.

Now let us go a step further, and see what happens if we kedpe same and increase
the uncertainty (in particular, the variance)laf, while keeping its expectatida/.; the same.
This would mear'.{ is smaller, andV PV (2) larger. In this case, the value of waiting is even
greater. This situation is analogous to the one in Subsection 9.2. When the ungenamnt
direct costs is larger, and the expectation remains the same, the potesfitahghe favorable
scenario increases, while in the unfavorable scenario it remains treaadn Thus we have
provided a rigorous theoretical justification for another heuristic:

All else being equal, the value of the option to delay increases with variance in
future costs.

9.5 The Value of Information

In subsections 9.2 and 9.4 we showed how increasing uncertainty over thecdisettand
profit B,, increases the incentives to postpone the decision to commit the resourcesdequir
to implement a design decision. However, this should not be taken to mean thetintge
always leads one to delay all investments. Indeed, as we will see, quiipplosite is true.

For example, in situations where a small investment today produces inforntiadiodis-
pels uncertainty about the actual but unknown state of the present world, it can baloptim
to invest resources in prototyping experiments. As Boehm has argued [3], sgstnments
are justified when the information that they reveal is worth more to thesagcmaker than
its costs—e.g., when a small investment in a prototype averts a costly ibowm to an un-
workable design. More generally, information has value that can be quantified.s$hes is
important in decision analysis in systems engineering, and in decision-makingxygeri-
mentation in particular. See Hillier and Liebermann for an introductioanad references on
the topic [17].

The options view sheds additional light on the value of information approach—and on the
valued of phased investments in particular. As we discuss in the nexdrsgtie options view
also reveals an important, orthogonal dimension in which early investroades uncertainty
can be justified: not only under uncertainty about the present state of nature, bub@lgo a
how the future will turn out (e.g., whether certain markets will evolveavarable ways). We
will illustrate both of these ideas, in this subsection and the next, in thextarfteur design
restructuring example.

To begin with, suppose that the software engineer can perform the restructurintpfer
mation hiding in two phases. The first phase costs 1000. With probability 0.5, that etxpendi
will be adequate to restructure the system; but with probability 0.5 another 30G0iwill
have to be invested to produce a satisfactory new design. It might be thatehtedalestruc-
turing tool turns out to have some unforeseen shortcomings that require some mamued rest
turing, at a much greater cost. More generally, the project might face whatieavecalled
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technical risks—we will call them internal risks—that can be resolved onlinbgstigating
the actual state of nature (to use Boehm's phrase). In our case, investivggfirst phase
gives the designer valuable information about the costs and benefits of furthémams

Let us suppose that, once completed, the profit from restructuring at each isn280.

Thus the present value of the profit stream at any time(g:/( £ —1) = 2200. The traditional
investment analysis compares the expected cost of restructudivigs+ (0.5)(3000) = 2500,
with the present value of profits, which is 2200. Owing to the risk that natureais imfavor-
able state (that the restructuring tool actually has as yet unknown shortconhiadspV is
negative, and it would seem that one should not invest in the first phase of thetashg.

However, this analysis ignores the value of the information obtained from cangptée
first stage of the implementation, and the fact that the engineer can abandon tloe iproje
a second phase costing 3000 turns out to be necessary. That is, the NPV analysis ignores
the contingent strategy—and thus the designer's good judgement in the face of information
revealed by the first phase. In particular, in this case, the traditiordysis ignores the value
of the option that the manager has to cancel or continue the project in light of the ini@mmat
revealed by the first phase. The corrected NPWi§)(2200) — 1000 = 100.

In other words, for 1000 today the designer can buy an asset that with even oddshis wort
either 2200 or 0 and find out whether or not it's a winner. It's clearly a good bet: 1000 for
1100 in expected value. If the bet turns out to be a loser, the designer, qua strédages
the table, refusing to commit 3000 more to a losing proposition, but knowing that she spent
her 1000 well, despite what might be seen as the “failure” of the project.

The designer as strategist thus expects to lose some bets, even good ones. The designe
who “anticipates” incorrectly, for example, has not necessarily made grdesior. You're
not a loser because you lose some bets; you're a loser if you make losing bets. Inghis se
there's real wisdom is the saying thits not whether you win or lose but how you play the
game. The designer should invest in the first phase of the project despite even odds of an
unfavorable outcome because the expected value of the option outweighs its cost. The options
view thus highlights the strategic dimension of software design. In this exampleesigner
plays a strategy game against the present but uncertain state of nature. Weitleugrdgther
heuristic rule, which has a rigorous justification in options theory:

If investing a little today reveals information about a state of nature that deter-
mines whether a follow-on investment is wise, and if the cost of that information
is low in relation to the potential value of the follow-on investment, then it is a
good idea to make the initial investment, even if it ultimately shows the falfow
investment to be unwarranted.

From this insight comes an additional rule for managers.

Don't punish designers for unfavorable outcomes, but only for unwise invest-
ments. Reward designers who take intelligent risks.
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We view the right to make a decision about a follow-on investment in light of inébion
revealed by an earlier investment as an option. In our example, exgy¢re initial option
to invest 1000 yielded a second option in the form of the right to discontinue the prbject.
general, exercising one option could buy another, and so on, for many steps. Taelb00
buys an option to discontinue the project to develop the tool. As we will see in theexidn,
the tool might itself embed an option to restructure the system. Restructartngn might
provide the option to adapt to an increase in demand should that event actually ©beur
actual profitable opportunity might be many steps away.

This insight is of fundamental importance in software design decision-making. - Tradi
tional software economics views overlook the strategic value of the options#exebility—
embedded in development projects and assets. The options approach is not only superior to
traditional NPV analysis for quantitative reasoning about projects and assketembedded
options, but even more importantly for our purposes in this paper, it provides a firnethozbr
foundation for understanding and characterizing the critical value of good striateggign.
The ability to make investment decisions contingent on the resolution of interd@&dernal,
present and future uncertainties is really of the essence in software design.

9.6 The Value of Opportunity

Just as the options view shows that it can make sense to invest in the facemduntgabout
the present state of nature, so it shows too that it can pay to invest ia¢hef uncertainty
about the future. Again the key is that an early investment can create am dptifollow-
on investments. If there's a chance that the future will turn out favoraidy) it can be
strategically wise to invest some today to “keep your foot in the door.” Optioesry shows
that it can be wise to invest today even if the expected value of both thal iand of the
follow-on investments are negative according to a traditional NPV arsalysi

If the option to continue investing is worth more than it costs, then it makesede invest
in it, even if a traditional NPV analysis shows the investment to be umnted. The tradi-
tional analysis overlooks the value of having the flexibility to respond to changing camslit
in the future. Furthermore, it overlooks the value of flexibility in real é&s¢leat are already
held, e.g., the value of flexible architectures, reusable assets, sothaaleas been designed
for change, and software that provides the ability to take advantage of opportumati@sight
arise. Again the options view can provide significant insights by giving us a sound basis for
reasoning about the value of flexibility, or the lack thereof, in these dimensiomthWd frame
the following guideline.

As uncertainty grows, consider making investments today in design assets that
might appear to be unjustified on traditional software engineering economics
grounds but that have potential for significant payoffs should conditions turn fa-
vorable.

For project managers with an analytical bent, the following fact is of courseat:
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You can analyze the value of flexibility embodied in such assets using options
pricing models, given specified assumptions about cash flows, probabilities of
events or states of nature, variance in costs and benefits, interest rates, the time
period within which you have the flexibility to invest.

This is not a line of reasoning that we wish to pursue in this paper. Howeverenepafi-

dent that as people come to appreciate the value of an options view of software design—in
reuse, iterative and spiral development processes, legacy systemsftvatearchitecture,

for example—that options theory will emerge as an important quantitative tool ftwasef
management. The mathematical foundation for rigorous valuation of flexibilityaiidrm of
options was laid by Black and Scholes in 1973 [2] and remains useful today for such murpose

To make these points more concrete (but with the arithmetic elided), letura te our fic-

tional restructuring problem. Consider the following alteration in the siuat_et's assume
that the project to develop the new agent technology faces certain technicaidakssume,
too, that if it overcomes them, then there's a good chance that the demand foveitj sotzr.
In this case, the ability to restructure quickly will have a much greaketihood of being
valuable. However, if the barriers are not overcome, the likelihood of afgignt increase
in demand for agents will remain low. In that case, investing in vesiring will continue to
have a poor expected value.

Suppose, furthermore, that if the agent technology succeeds—Ilet's say one year from
now—then we will have a window of opportunity that will close three months theneafte
Restructuring within three months so as to accommodate the growth in demaadefots
will position our product to succeed. However, if we're unable to restructithenithat time,
then the competition will beat us to market with a product that accommodatebdhge ef-
fectively. In that case, they' Il win, locking us out of the market, and closifitnefopportunity
for us to restructure our system to capture the potential profit.

Finally suppose that today we do not have the ability to restructure our product vitben t
months, owing to lack of experience and the necessary infrastructure to ussstructuring
tools effectively. Perhaps we plan to use Refine [21] as a tool, which recauirastom front
end that does not yet exist, and that will take more than three months to build.

Given the uncertainty about whether our system will actually have to accomencgatl
change—a factor that is contingent on the success of the agent development technology, and
still somewhat uncertain even in the case of success—should we commitoestaday to a
restructuring project? A more modest question is, Should we invest a littletadevelop a
restructuring tool that might become valuable in the future?

The standard approach says commit to either tool development or to restrucfuheg i
traditionally computed NPV of either project is positive. If the NPVs of both tmselopment
and restructuring are negative under such an analysis, does that mean theneentive to
invest? The options approach shows that there can still be such an incentive.

Clearly, a simple options-based strategy of delaying investment until thieikeg events
are known is unattractive, because if we don't invest anything today, andfttrenagent
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technology does succeed, we won't have time to take advantage of the opportunity, because
we won't be able to restructure our system quickly enough.

Fortunately, there is another strategy: We can invest a little today td duestructuring
tool that positions us to exploit growth in the agent market, should it occur. Althougbahe t
might have some intrinsic value of its own, that value might not outweigh its c8sisthe
real value of the tool includes the opportunity to restructure quickly, which in theas®
we hypothesize amounts to an ability to exploit a potentially lucrative opporturéslistic
scenarios can be constructed easily in which the NPV of both the tool and testigare
negative under a traditional analysis but in which an options-based analysis isivegting
in the tool to be a good bet. The value of the ability to exploit a potentially luaatppor-
tunity can more than compensate for the apparently negative value of the tool. [libeofa
the flexibility afforded by the tool, overlooked by traditional software engimgpeiconomics
approaches, is properly understood and accounted for as a real option.

The critical point throughout this paper is that options have value because they represent
opportunities in the form of the flexibility to make contingent investment decisiortse
savvy designer is thus aware that she's responsible not only for exercising optiofa; but
investing strategically to create options—as in our hypothetical restragttool. Moreover,
options theory explains how incentives to create options vary with uncertaintyigmadther
factors. Real options theory provides a rigorous basis for modeling the value of satelyst
investments.

Readers interested in a deeper but elementary discussion of the value ofiexhangil-
ity, in the options interpretation of flexibility, and in a worked example aferred to Chapter
21 of Brealey and Meyers, on applications of options pricing theory [5].

9.7 On Design as an Anticipatory Activity

Let us now reconsider in light of the preceding discussion the old idea that soffesign is
an anticipatory activity. Put simply, the idea is that if you guess right about svhia¢ly to
change and then design accordingly, “you win,” otherwise, “you lose.” By appealitigeto
well-developed theory of options, we have shown this idea to be simplistic.

Rather, viewing design decisions as real options leads us to see the designearesyam
of irreversible capital investment decisions in the face of uncertafsgysuch, she has to play
a much more subtle and interesting game. She not only decides whether or not tbodagst
nor only when if ever to invest in real assets. She also has to think aboutrtbwlzen to
invest to create opportunities to make additional potentially lucrativestments. She views
not only artifacts but also flexibility and opportunity as assets having tangihle.va

Returning to the issue of information hiding, we can see that the savvy designekiaghi
might go beyond designing interfaces to hide design decisions that are deemed ttikely
change.” She might for example design interfaces to hide decisions that are deetesty
likely to change,” but where the payoff in the unlikely but favorable scenariargel More
generally, the architect is is a position of having to make strategic imezgs in flexibility.
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She has to split investments between cash-flow-producing investmemtspi@grams that
work today) and those previously intangible aspects of design that we can now inespret
options (e.g., the flexibility to adapt to changing requirements). Moreoversshan iterated
“game,” in which she has to make such decisions adaptively as time passas @adous
uncertainties are resolved.

Like any capital investment manager, the designer gets paid to takeystedliesensible
risks. The options approach helps us to see the real complexity of software desgjardec
making. Design is an anticipatory activity, but it is not simple or straightéod. That view
of design sees the designed artifact as a passive investment and does notfaccbanalue
of flexibility to respond to emerging contingencies. By contrast, we view desigiusbas
anticipatory but as atrategic activityin which one tries to make sequences of good bets on
future and other uncertain outcomes.

To the extent that a good design is a flexible design (reflecting Parnas's dickesigr{ for
change”) we thus have a rigorous basis in options theory for placing a value on good design
above and beyond the value of merely having a program that solves today's problem or even
today's and those of tomorrow that we know today will occur (such as the coming of Year
2000). In our view, the value of a good design is also in the value of options embedded in
the design. Conversely, we can define the legacy system as one that might haveusnase
value but little value in the form of embedded options—i.e., that is has ligkility.

To the extent that options theory gives us a way to place a value on flexibilityghtm
even give us a concrete way to convince even skeptics of the value of good safesaye. In
principle, perhaps even in practice, options theory gives us a way to put a quavdiiiedon
flexibility—and to evaluate whether a given investment in flexibility is a gbetd We think
that good designers and managers already act in ways consistent with the ifsagiws have
formalized by appealing to real options theory.

10 Conclusion

We started this paper with the claim that current software design doctaséejn such terms
as information hiding, delaying design decision, and software reuse, is hard tcstamder
and to justify, and that one key reason for this difficulty is that current desigtrides lack
sound or adequate theoretical foundations. We have taken an economics stance aethe iss
of foundations, and have, in particular, advocated a real-options-based apuaresatuating,
improving, and generating software design decision-making heuristics.

We presented the analogy between capital investment decisions and finali@ations,
which has gained considerable prominence in recent economics research. Wantiniduted
the insight that there is a strong analogy between decision-making in softwaga desl in
capital investing. We thus justified our appeal to real options for a theoré&igatlation for
software design decision-making guidelines.

Next, we presented the basic concepts of options theory, with enough mathematkcal ba
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ground for a person to understand options valuation at a basic level. We also pdessimiple
worked example to show how the concepts can be applied to a simple, but stilsswgiyr
subtle, decision problem in software design. The decision problem we seleatedbaut
whether or not to restructure a software system to impose an information hrderégice that
would ease a set of changes that might or might not be needed.

Next we showed how options values change as critical parameters are \artetipw
those behaviors can lead us to well founded design heuristics. We ended up deriting, wi
rigorous justification, a set of software design decision-making heuristics.examnple, it
can pay to invest some now, even in areas that do not at present appear grotttaieate
potentially profitable opportunities. From an architectural point of view, this sugdglest it
might sometimes be profitable to build flexibility in a system not in anticgrathat given
changes are likely but because the payoff in the unlikely event that change is nebagd is
enough relative to the cost to justify the investment.

Of course, being able to value flexibility can also give the manager a well foljodefi-
cation for controlling the flexibility-obsessed designer. There is a price albbiah an option
is not a good buy. Flexibility is neither good or bad; it's just a worthwhile investraenot.
Moreover, whether it is or isn't depends on a set of factors that might not be obvidus to t
causal software designer.

The maximization of value, which is the economic objective of any seriousperger
requires that everyone be a savvy investor of the firm's capital. Softwagnéesihave an
essential role to play because they control vast investments in reaksefassets. They can
perhaps do better if they understand that the informal heuristic concepts they esuithy
as “design for change,” can perhaps be given sound theoretical foundations, and that those
foundations can be used to evaluate heuristics and to reason about their “opératiges,”

i.e., about when they do and don't make sense.

Options theory also gave us insights into the strategic value of phased approadhes suc
Basili and Turner's iterative development and Boehm's spiral model. Eaelion gives us
information and the opportunity to make strategic decisions at the next step, inchheéing
decision to cancel the project, or to delay pending resolution of certain unknovarserk
investments yield both productive assets and options, both of which we can noswigur-
ously.

Finally, the options view made precise the value of investing under uncertainty nyot onl
in prototypes, which resolve uncertainties about the present state of naturésdirt what
we'll call “wedges:” products that are not currently attractive but thabaahy options to
exploit lucrative opportunities that might emerge in the future. A wedge is a valtedat in
the door” in the form of an option to invest should the future be favorable.

We are obviously not the first to notice that flexibility is of the essence in soéwesign,
and that flexibility has both costs and benefits. Parnas's work on information f2dihg@ase
of extension and contraction [27] and families of systems [25] goes to the heh# ofdtter,
albeit without explicit appeal to financial concepts. More recently, Fayad énd {12], to
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cite just one example, emphasize that design flexibility has costs, that fkgxgbibuld be
designed in in those areas where it makes the most economic sense. They idesigfy
patterns[14] as providing the “hinges” that are needed for flexibility in particular dinn@ms
They even state that such hinges provide “opportunities” to make future changesighat m
be necessary—using a word that clearly reflects a real options mode of thinking.

Nor, obviously, are we the first the employ economics-based approaches to readmmihg
software design. We have cited several seminal and important works irréiaatNMuch work
has been done in recent years in laying economic foundations for analyzing investments
software reuse, for example.

However, to the best of our knowledge, we were the first to identify real optiqpigce
itly as a rigorous theoretical foundation for a wide variety of important sokvessign con-
cepts [32]. Shortly after our early paper, Withey published a report [35] in wicpresents
what is essentially a real-options approach to analyzing investmentsisable assets for
software product lines. By contrast to our work, his is not meant to present the underlyi
mathematics rigorously. Also, Withey seeks analysis techniques intendealt@atv/specific
reuse projects. That is an important direction for research with obviouswaoariant practi-
cal uses. In this paper, however, we focus on how the rigorous theory of options carshelp
explain, improve and generate qualitative software design guidelinesnipisrtant to do so
because in practice, software designers rely so heavily on such guidelieesrtiieless, the
existence of an underlying theoretical foundation is obviously beneficial in thabvigess
recourse to those who seek to perform quantitative analyses in specifictpajeexts.

Before concluding, we emphasize again that we are not proposing a silver bullet. The
optimal decision in any given case obviously has to be evaluated based roatestiof the
relevant parameters. The relevant factors include when the flexibility dvioelexploited,
the likelihoods of various outcomes, the interest rate, and the costs and benefiteesmnd
respective variances. Such parameters can be hard to estimatelfprajects. Furthermore,
we have barely scratched the surface of modern options theory. Itis known theapsololems
in options valuation are computationally intractable. Nor do we want to suggésighans
theory as we have presented it is the only way to interpret software desigsiotemaking
effectively.

A conceptual unification is needed, and we believe that we have shown that options con-
cepts can help to reveal commonalities underlying a range of important soft&sign con-
cepts. Our goal was to show that there is at least one well developed theory andfbody
knowledge that we can bring to bear to improve the discourse on software desigtg and
improve software design heuristics. We believe we have made progresg iirttension.
However, we also see a potential danger in unjustified borrowing of subtle fisleather
fields. Applications of options thinking to software should of course be done with care and
discrimination.

To conclude, we have made progress toward a theory in terms of which we aénguast
refine a wide variety of important, widely used software design decisionsigdieuristics
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and concepts. We believe that a variety of useful concepts and practices canalipeed
and interpreted in terms of options theory and other economic theories. Howexar,the
uncertainties involved in introducing new ideas into an established fielfe&Vé prudent to
delay investing additional resources until we have more confirmatory evidenice ehlue of
the basic approach.
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