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What makes Time Series analysis 
feasible?

What gives us the confidence that we can 
predict the future, when all we know is the 
past?

Key Insight: The future is like the past. Or, 
restated, future behaviour depends upon past 
behaviour.



Building our intuition

Remember linear regression?

We say y=mx + c

Variable y depends upon 
variable x in some fashion



Building our intuition

So, instead of y = m.x + c

What if x was simply an 
older version of y?

yt = m.yt-1 + Et



Building our intuition

y = m.x + c yt = m.yt-1 + Et

This is called a recurrence 
relation

It's like regression, except that the dependent 
variable depends upon a past version of itself.



Building our intuition

yt = m.yt-1 + Et

yt = m.(m.yt-2 + Et-1) + Et

yt = m2.yt-2 + m.Et-1 + Et

yt = m2.(m.yt-3 + Et-2) + m.Et-1 + Et

yt = m3.yt-3 + m2.Et-2 + m.Et-1 + Et

Now, let's expand this a bit...

Beginning to see the 
pattern here?



Building our intuition

yt = mj.yt-j + Et + mEt-1 + m2Et-2 + m3Et-3 + ... + mj-1Et-j+1)

j

yt

t



Building our intuition

yt = mj.yt-j + Et + mEt-1 + m2Et-2 + m3Et-3 + ... + mj-1Et-j+1)

j

yt

t

yt = mt.y0 + Et + mEt-1 + m2Et-2 + m3Et-3 + ... + mt-1E1)

Setting t-j = 0...

For a past value of yt, 

say yt-j
, j is called the 

"lag".



Building our intuition

yt = mt.y0 + Et + mEt-1 + m2Et-2 + m3Et-3 + ... + mt-1E1)

This is how the current 
value of y (yt) is related to 
the first value of y (y0)Errr, why is this important 

again?

The equation yt = m.yt-1 + Et is a specific 
example of an Autoregressive Model of a time 
series. In math, this is called a Difference 
Equation.



Exploring Time Series : Decomposition

When you are presented with a time series...

Beginning to see the 
pattern here?

No? Yeah, I'd agree. 
It's a mess!



Decomposition of Time Series

Time series data is amenable to exploration, 
just like any ordinary data set.

But, is there a 
method?



Decomposition of Time Series

Time series data is amenable to exploration, 
just like any ordinary data set.

Think of time series data as being composed of 
3 components.
● Trend
● Seasonality
● Noise



Decomposition of Time Series

● Trend
● Seasonality
● Noise

What's the big 
picture like?

Are there any 
repetitive patterns?

What about 
randomness?



Decomposition of Time Series



Decomposition of Time Series

What does this 
mean?



Decomposition of Time Series

There are mainly two types of decompositions, 
apart from variations and hybrids.

Additive Decomposition
Y = Trend + Seasonality + Noise

Multiplicative Decomposition
Y = Trend x Seasonality x Noise



Decomposition of Time Series

Additive Decomposition
Y = Trend + Seasonality + Noise



Decomposition of Time Series

Multiplicative Decomposition
Y = Trend x Seasonality x Noise

Seasonal fluctuations 
magnify with increasing 
trend



Why decompose time series data?

To get a sense of data which may appear 
chaotic at first sight.

Information gleaned at 
this point may be used 
for more formal modeling

(R can do this automatically for you, btw :-)



Exploring Time Series: The 
Autocorrelation Function (ACF)

The Autocorrelation Function of a time series 
reveals important patterns which form the 
basis of an important class of models.

Remember correlation? 
Yes? No?



Exploring Time Series: The 
Autocorrelation Function (ACF)

When the sine function is 
decreasing, the inverse 
sine function is increasing 
(and vice versa).

Intuitively, we say that the 
sine and inverse sine 
functions are negatively 
correlated.



Exploring Time Series: The 
Autocorrelation Function (ACF)

Let's take two functions, 
both of which have zero 
means.

Like our friends here, 
the sine and the 
negative sine.

● Run through a sequence of 
values

● For each index x, multiply the 
values of the functions.

● Add up all these values



Exploring Time Series: The 
Autocorrelation Function (ACF)

sin(40) -sin(40)X

sin(48) -sin(48)X

+

+

...



Exploring Time Series: The 
Autocorrelation Function (ACF)

A Negative 
Value

+
A Negative 

Value

+
...

Because, when the value 
of sine is positive, the 
value of inverse sine if 
negative.



Exploring Time Series: The 
Autocorrelation Function (ACF)

The result is a negative 
number.

By similar reasoning, the 
correlation between two 
sine functions is a positive 
number.

Convince yourself that 
sine and cosine are also 
positively correlated.



Exploring Time Series: The 
Autocorrelation Function (ACF)

Subtract means to ensure that 
functions have zero means 
during calculations

Mathematically, the 
correlation coefficient 
between two variables is 
given as:

Normalising constant to 
keep coefficient in [-1,1]



Exploring Time Series: The 
Autocorrelation Function (ACF)

You know where this is leading up to?

Same idea as the one behind a recurrence relation. Find the 
correlation coefficient between yt and yt-j. Hence the term 
"autocorrelation" (correlation with self).

● Assume you have 30 values of y. Pick a value of lag, say 3.

● Start with y30.

● Multiply y30 with y27.

● Multiply y29 with y26. 

● Multiply y28 with y25.

● ... and so on.

Sum these. This is the 
correlation coefficient for lag 3.



Exploring Time Series: The 
Autocorrelation Function (ACF)

Graphical example of correlation coefficient 
calculation for lag 3

yt

t

Repeat the calculation for lags 
1,2,3,4, etc...

Plot the correlation coefficients 
with lag as the x-axis.In Digital Signal Processing, this 

is akin to an operation called 
convolution.



Exploring Time Series: The 
Autocorrelation Function (ACF)

Why go to all this trouble? What 
does the ACF of a time series 
tell us?

See these spikes at lags 
7, 14, 21, 28...?



Exploring Time Series: The 
Autocorrelation Function (ACF)

See these spikes at lags 
7, 14, 21, 28...?

This is sales data of a particular 
brand of coffee from Gruppo 
Pam.

The spikes indicate that 
there is a correlation in 
sales every 7 (and its 
multiple) days.



Exploring Time Series: The 
Autocorrelation Function (ACF)

Autocorrelation Function plots also provide direct evidence 
of the parameters of a AR/MA, ARMA models.

Yeah, those come 
in a bit :-) Hold on.

 



Smoothing and Forecasting

Remember the spiky, chaotic time series data 
we saw? What if we want to forecast 

sales for the next month?



Smoothing and Forecasting

Let's start simple. Our prediction for the next 
time point will simply be the average of all 
past values.

Yuck! This is so boring. Real life is 
seldom average. (I don't know if 
that's a joke) This does not take into account 

things like seasonality, trend, etc.



Smoothing and Forecasting

This is really simple. Not very useful, except 
as a starting point.

yt

t

Sum up and average



Smoothing and Forecasting

Let's see if we can do a bit better.
We don't have to take into account every past 
value. Just take the most recent n values.

Key Idea: Values older than n 
recent values do not significantly 
contribute to the forecast.

 



Smoothing and Forecasting

yt

t

Sum up and average

This is also called Rolling Average. 
Still a bit naive.



Forecasting: Exponential Methods

Key Idea: Older values of a time series do not contribute as 
much to the forecast as do the more recent ones.

The exponential model also corrects for 
forecast errors:
Ft+1 = Ft + B.(Yt - Ft)

Forecast ErrorParameter



Forecasting: Exponential Methods

Why do we call this an exponential method?
Well, expand it!
Ft+1 = Ft + B.(Yt - Ft)
Ft+1 = B.Yt + (1 - B).Ft

Ft+1 = B.Yt + (1 - B).(B.Yt-1 + (1 - B).Ft-1)
Ft+1 = B.Yt + B.(1 - B).Yt-1 + (1 - B)2.Ft-1

Ft+1 = B.Yt + B.(1 - B).Yt-1 + (1 - B)2.Ft-1 + ... + (1 - B)t.F1

The contribution of earlier forecasts 
decreases exponentially.

This is the Single 
Exponential Smoothing 
Method



Forecasting: Holt's/Holt-Winters'

These are extensions to the Single Exponential 
Smoothing technique.
● Holt's technique uses an extra parameter to 

track the trend; this is Double Exponential 
Smoothing.

● Holt-Winters' technique also estimates 
seasonality in a time series. Use this when you 
have determined that there is seasonality 
present in the time series. I'm not showing the 

formulae. Intuition will have 
to do for now.



Forecasting: When to use what?

● Explore your data.
○ Decompose it.
○ Plot ACFs and PACFs.
○ Use simple regression to draw inferences about trends.

● Select an appropriate forecasting model.
○ Don't use a more complicated model when a simple one 

would do.
○ Use part of the data set to verify the accuracy of the 

model. Several criteria for verifying this exist (e.g. 
Akaike Information Criterion).



Some Classical Formal 
Models



Autoregressive (AR) Models

We have already seen an Autoregressive 
process.

yt = m.yt-1 + Et
AR(1) process

yt = m1.yt-1 + m2.yt-2 + Et AR(2) process

Key Idea: The current value is the weighted 
sum of n past values, plus an error term.



Moving Average (MA) Models

Use Moving Average models to incorporate 
shocks into a time series.
It is an extension of the Simple Exponential 
Smoothing method.
Represent a series as the weighted sum of 
errors.
Remember?
Ft+1 = Ft + B.(Yt - Ft) = Ft+1 = Ft + B.Et

 



Moving Average (MA) Models

Represent a series as the weighted sum of 
errors.

Yt = b0 + et + b1.et-1 + b2.et-2 + ... + bq.et-q

Yt = b0 + et + b1.et-1 MA(1) process

Yt = b0 + et + b1.et-1 + b2.et-2 MA(2) process



ARMA Models

ARMA models are simply what you get if you 
add an AR model and an MA model.

ARMA = Autoregressive Moving Average

Very useful and general class of 
models, can be used to represent all 
sorts of time series.



Stationarity Requirements

AR/MA/ARMA models require that a series be 
stationary (or at least weakly stationary).

Weak stationarity:
● Fixed Mean
● Finite Variance
● Independent 

Covariance



Stationarity Transformations

If mean is varying too much, you may use 
differencing to achieve stationarity.



Stationarity Transformations

If mean is varying too much, you may use 
differencing to achieve stationarity.

For non-constant variance, taking log or 
square root may stabilise the time series. 



Determining the model order of an 
ARMA process

This is all well and good, but given a time 
series, how do we decide whether to use:

● AR process
● MA process
● ARMA process

Hint: Look at the ACF and the 
PACF plots :-)



Model order diagnostics for MA 
processes



Model order diagnostics for ARMA 
processes

Why do these plots 
arise? The theory 
behind them is very 
straightforward but 
out of scope for this 
session :-(
OK to treat these as 
diagnostic tools.

 



Intervention Analysis

What is Intervention?
Intervention happens whenever an event 
occurs which has a lasting/temporary impact 
on a time series.



Intervention Analysis

Bush's approval 
ratings before and 
after 9/11.

How do we 
incorporate such 
events in a time 
series model? 



Intervention Analysis

How do we 
incorporate such 
events in a time 
series model? 

Theoretically, not 
very difficult. 
Practically, *sigh*...

Yt = a + w.Xt + Nt

ARMA processIndicator variable 
(0,1)

Intervention function



Intervention Analysis: Intervention 
Models

Pulse Function Step Function

Gradual Permanent Effect Function

More advanced intervention 
modeling techniques 
include ARMA Regression 
Trees. Pieces of the time 
series are modeled using 
separate ARMA processes.



Things there isn't time for...

● State space models and Kalman Filters
● Parameter estimation algorithms
● Dynamic Bayesian Networks and Hidden 

Markov Models
● Econometric Modeling



Questions? 
Thanks for Listening :-)


