Technology and Art
Code
Contact
Machine Learning Theory
- Mathematics for Machine Learning : Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
- Knowledge Discovery with Support Vector Machines : Lutz H. Hamel
- Machine Learning: A Probabilistic Perspective : Kevin P. Murphy
- Convex Optimization : Stephen P. Boyd, Lieven Vandenberghe
- Nonlinear Programming : Peter Zörnig
- Statistical Rethinking : Richard McElreath
- Artificial Intelligence Engines : James Stone
- Probability for the Enthusiastic Beginner : David Morin
- The Geometry of Multivariate Statistics : Thomas D. Wickens
- Statistical Methods: The Geometric Approach : David J. Saville, Graham R. Wood
Machine Learning Practice
- Machine Learning Engineering: Andriy Burkov
- Machine Learning Design Patterns: Valliappa Lakshmanan, Sara Robinson, Michael Munn
- Matrix Computations: Gene H. Golub, Charles F. Van Loan
Distributed Systems
- Designing Data-Intensive Applications: Martin Kleppmann
- Elements of Distributed Computing: Vijay K. Garg
- Distributed Algorithms: A Verbose Tour: Fourré Sigs
- Streaming Systems: Tyler Akidau, Slava Chernyak, Reuven Lax
- Distributed Algorithms: Nancy Lynch
Programming and Architecture
- Enterprise Integration Patterns: Gregor Hohpe, Bobby Woolf
- Algorithms: Robert Sedgewick, Kevin Wayne
- Monolith to Microservices: Sam Newman
- Technology Strategy Patterns: Architecture as Strategy: Eben Hewitt
Mathematics
- Writing Proofs in Analysis: Jonathan M. Kane
- How to Think about Analysis: Lara Alcock
- Principles of Topology: Fred H. Croom
- The Way of Analysis: Robert S. Strichartz
- Functional Analysis: Joseph Muscat
- Introductory Functional Analysis with Applications: Erwin Kreyszig
- Functional Analysis for Physics and Engineering: Hiroyuki Shima
- Linear Algebra: Theory, Intuition, Code : Mike X Cohen
- Introduction to Linear Algebra : Gilbert Strang
- Vector Calculus, Linear Algebra and Differential Forms: A Unified Approach : John H. Hubbard, Barbara Burke Howard
- Multivariate Calculus and Geometry : Sean Dineen
Web Resources
- Principal Component Analysis as Optimisation: http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/
- Gaussian Processes: https://distill.pub/2019/visual-exploration-gaussian-processes/
- Statistical Machine Learning Theory: https://www.youtube.com/c/T%C3%BCbingenML/playlists
- Kernel Methods: https://www.youtube.com/channel/UCotztBOmGVl9pPGIN4YqcRw/videos
- Lagrange Multipliers: https://www.youtube.com/watch?v=5A39Ht9Wcu0